Antimicrobial Effects of Tannic Acid Combined with Plasma-Activated Water and Their Application in Strawberry Preservation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacteria Cultivation
2.3. PAW Inactivation and Synergistic Treatment
2.4. Determination of Nucleic Acid and Protein Leakage
2.5. Total Cellular Protein Concentration
2.6. Morphological Observation
2.7. Determination of Malondialdehyde (MDA) Content
2.8. Reactive Oxygen Species (ROS) and Antioxidant Enzyme Activity Measurements
2.9. Application in Strawberry Preservation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Antibacterial Effects and Kinetics of PAW and Different Natural Antimicrobial Agents
3.2. Changes in Bacterial Cell Membrane Permeability and Integrity
3.3. Impact on ROS and Antioxidant Enzyme Activities in Bacterial Cells
3.4. Effect of Tannic Acid–PAW Combined Treatment on Strawberry Preservation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priyadarshi, R.; Jayakumar, A.; de Souza, C.K.; Rhim, J.W.; Kim, J.T. Advances in strawberry postharvest preservation and packaging: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13417. [Google Scholar] [CrossRef]
- Bhullar, M.; Perry, B.; Monge, A.; Nabwiire, L.; Shaw, A. Escherichia coli survival on strawberries and unpacked romaine lettuce washed using contaminated water. Foods 2021, 10, 1390. [Google Scholar] [CrossRef]
- Aliakbarlu, J.; Manafi, L.; Mortazavi, N.; Lin, L.; Kaboudari, A. The antibacterial activity of endolysins against food-borne pathogenic bacteria in vitro and foods. Crit. Rev. Food Sci. Nutr. 2025, 65, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Shanker, M.A.; Khanashyam, A.C.; Pandiselvam, R.; Joshi, T.J.; Thomas, P.E.; Zhang, Y.; Rustagi, S.; Bharti, S.; Thirumdas, R.; Kumar, M.; et al. Implications of cold plasma and plasma activated water on food texture-a review. Food Control 2023, 151, 109793. [Google Scholar] [CrossRef]
- Xiang, Q.; Fan, L.; Li, Y.; Dong, S.; Li, K.; Bai, Y. A review on recent advances in plasma-activated water for food safety: Current applications and future trends. Crit. Rev. Food Sci. Nutr. 2022, 62, 2250–2268. [Google Scholar] [CrossRef]
- Han, Q.-Y.; Wen, X.; Gao, J.-Y.; Zhong, C.-S.; Ni, Y.-Y. Application of plasma-activated water in the food industry: A review of recent research developments. Food Chem. 2023, 405, 134797. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.-Y.; Lai, Y.-C.; Hsiao, C.-P.; Chen, S.-Y.; Liu, C.-T.; Wu, J.-S.; Lin, C.-M. Antibacterial activity and the physicochemical characteristics of plasma activated water on tomato surfaces. LWT-Food Sci. Technol. 2021, 149, 111879. [Google Scholar] [CrossRef]
- Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015, 300, 643–651. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Bourke, P. Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavus spores and biofilms: A comparative study. Appl. Environ. Microbiol. 2020, 86, e02619-19. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, X.; Liu, S.; Ma, Y.; Xu, C.; Bai, Y. Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innov. Food Sci. Emerg. Technol. 2019, 52, 49–56. [Google Scholar] [CrossRef]
- Wang, Q.; Salvi, D. Evaluation of plasma-activated water (PAW) as a novel disinfectant: Effectiveness on Escherichia coli and Listeria innocua, physicochemical properties, and storage stability. LWT-Food Sci. Technol. 2021, 149, 111847. [Google Scholar] [CrossRef]
- Tang, W.; Sun, R.; Jiang, N.; Om, A.-S. Effects of ultrasonication coupled with plasma-activated water cleaning on the sterilization and preservation of fresh crucian carp fillets. LWT-Food Sci. Technol. 2025, 215, 117246. [Google Scholar] [CrossRef]
- Zeraat Pisheh, F.; Falah, F.; Sanaei, F.; Vasiee, A.; Zanganeh, H.; Tabatabaee Yazdi, F.; Ibrahim, S.A. The effect of plasma-activated water combined with rosemary extract (Rosmarinus officinalis L.) on the physicochemical properties of Frankfurter sausage during storage. Foods 2023, 12, 4022. [Google Scholar] [CrossRef]
- Wu, M.; Ma, Y.; Dou, X.; Aslam, M.Z.; Liu, Y.; Xia, X.; Yang, S.; Wang, X.; Qin, X.; Hirata, T.; et al. A review of potential antibacterial activities of nisin against Listeria monocytogenes: The combined use of nisin shows more advantages than single use. Food Res. Int. 2023, 164, 112363. [Google Scholar] [CrossRef]
- Gao, S.; Zhai, X.; Wang, W.; Zhang, R.; Hou, H.; Lim, L.-T. Material properties and antimicrobial activities of starch/PBAT composite films incorporated with ε-polylysine hydrochloride prepared by extrusion blowing. Food Packag. Shelf Life 2022, 32, 100831. [Google Scholar] [CrossRef]
- Dixit, A.; Sabnis, A.; Balgude, D.; Kale, S.; Gada, A.; Kudu, B.; Mehta, K.; Kasar, S.; Handa, D.; Mehta, R.; et al. Synthesis and characterization of citric acid and itaconic acid-based two-pack polyurethane antimicrobial coatings. Polym. Bull. 2023, 80, 2187–2216. [Google Scholar] [CrossRef]
- Kumaresan, V.; Bhatt, P.; Arockiaraj, J. Membrane disruption antimicrobial mechanism of Channa striatus lysozyme-derived antimicrobial peptides (AMP). Fish Shellfish Immunol. 2016, 53, 74–75. [Google Scholar] [CrossRef]
- Nassar, R.; Nassar, M.; Vianna, M.E.; Naidoo, N.; Alqutami, F.; Kaklamanos, E.G.; Senok, A.; Williams, D. Antimicrobial activity of phytic acid: An emerging agent in endodontics. Front. Cell. Infect. Microbiol. 2021, 11, 753649. [Google Scholar] [CrossRef] [PubMed]
- Che Lah, N.A.; Kamaruzaman, A. The physico-chemical and antimicrobial properties of nano ZnO functionalised tannic acid. Sci. Rep. 2024, 14, 18596. [Google Scholar] [CrossRef]
- Du, Y.; Mi, S.; Wang, H.; Yang, F.; Yu, H.; Xie, Y.; Guo, Y.; Cheng, Y.; Yao, W. Inactivation mechanism of Alternaria alternata by dielectric barrier discharge plasma and its quality control on fresh wolfberries. Food Control 2023, 148, 109620. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Z.; Chen, D.; Yu, Z.; Huang, L.; Yu, H.; Yao, W.; Xie, Y. Inactivation effect of Staphylococcus aureus and application on fresh-cut pineapples by plasma-activated tartaric acid. Food Biosci. 2023, 54, 102789. [Google Scholar] [CrossRef]
- Kong, J.; Zhang, Y.; Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Quek, S.Y.; Yao, W. Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in postharvest preservation of tomatoes. Food Chem. 2019, 285, 380–388. [Google Scholar] [CrossRef]
- Dong, H.; Han, S.; Mi, K.; Hao, Y.; Waterhouse, G.I.; Tong, L.; Hou, S. Asymmetric Janus composite films with superior humidity regulation capabilities for the efficient preservation of strawberry fruit. Food Chem. 2025, 478, 143646. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, C.; Li, Q.; Cheng, J.-H. Physicochemical properties of plasma-activated water and its control effects on the quality of strawberries. Molecules 2023, 28, 2677. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Li, X.; Xiao, J.; Sun, J.; Guo, L. Inactivation of Escherichia coli on broccoli sprouts via plasma activated water and its effects on quality attributes. LWT-Food Sci. Technol. 2022, 154, 112761. [Google Scholar] [CrossRef]
- Dong, G.; Liu, H.; Yu, X.; Zhang, X.; Lu, H.; Zhou, T.; Cao, J. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat. Prod. Res. 2018, 32, 2225–2228. [Google Scholar] [CrossRef]
- Slabbert, N.E. Complexation of Condensed Tannins with Metal Ions. In Plant Polyphenols; Hemingway, R.W., Laks, P.E., Eds.; Basic Life Sciences; Springer: Boston, MA, USA, 1992; Volume 1, pp. 421–436. ISBN 978-1-4613-6540-2. [Google Scholar]
- Yao, Q.; Xu, H.; Zhuang, J.; Cui, D.; Ma, R.; Jiao, Z. Inhibition of fungal growth and aflatoxin B1 synthesis in aspergillus flavus by plasma-activated water. Foods 2023, 12, 2490. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Z.; Liu, Y.; Chen, X.; Wang, S.; Yang, H. Combined proteomic and transcriptomic analysis of the antimicrobial mechanism of tannic acid against Staphylococcus aureus. Front. Pharmacol. 2023, 14, 1178177. [Google Scholar] [CrossRef]
- Tintino, S.R.; Oliveira-Tintino, C.D.; Campina, F.F.; Silva, R.L.; Costa, M.D.S.; Menezes, I.R.; Calixto-Júnior, J.T.; Siqueira-Junior, J.P.; Coutinho, H.D.; Leal-Balbino, T.C.; et al. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb. Pathog. 2016, 97, 9–13. [Google Scholar] [CrossRef]
- Borisov, V.B.; Siletsky, S.A.; Nastasi, M.R.; Forte, E.R.O.S. defense systems and terminal oxidases in bacteria. Antioxidants 2021, 10, 839. [Google Scholar] [CrossRef]
- Li, B.; Song, Z.; Zhang, M.; Ma, Q.; Hu, W.; Ding, C.; Chen, H. Study on the damage and variation of Agropyron mongolicum induced by the combined action of discharge plasma and plasma-activated water. Plant Physiol. Biochem. 2025, 220, 109486. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; He, Y.; Hao, H.; Wang, L.; Zhang, L.; Wang, Y.; Liu, C.; Li, Y.; Lu, K.; Yin, X.; et al. Preparation of curdlan/tannin acid composite hydrogels with photothermal conversion, antibacterial and antioxidant properties. Colloids Surf. A Physicochem. Eng. Asp. 2025, 711, 136402. [Google Scholar] [CrossRef]
- Jyung, S.; Kang, J.-W.; Kang, D.-H. Inactivation of Listeria monocytogenes through the synergistic interaction between plasma-activated water and organic acid. Food Res. Int. 2023, 167, 112687. [Google Scholar] [CrossRef] [PubMed]
- Saidji, N.; Malki, F.; Boukerche, H.; Mokrane, H. Insight into stability and degradation kinetics of Roselle (Hibiscus sabdariffa L.) flowers anthocyanin, effect of pH, heating, storage conditions, and co-pigment treatment. Biomass Convers. Biorefinery 2024, 14, 30613–30625. [Google Scholar] [CrossRef]
- Song, C.; Wang, J.; Wu, L.; Liu, J.; Liu, G.; Gong, D.; Zhang, W.; Wei, J.; Zhang, Z. Quality and physiological changes in fresh-cut mango fruit as affected by cold plasma-activated water. Postharvest Biol. Technol. 2025, 225, 113524. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Wang, K.; Li, X.; Guo, C.; Yang, H. Effects of electrolysed water and levulinic acid combination on microbial safety and polysaccharide nanostructure of organic strawberry. Food Chem. 2022, 394, 133533. [Google Scholar] [CrossRef]
- Ma, R.; Yu, S.; Tian, Y.; Wang, K.; Sun, C.; Li, X.; Zhang, J.; Chen, K.; Fang, J. Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries. Food. Bioprocess Technol. 2016, 9, 1825–1834. [Google Scholar] [CrossRef]
- Perinban, S.; Orsat, V.; Raghavan, V. Influence of plasma activated water treatment on enzyme activity and quality of fresh-cut apples. Food Chem. 2022, 393, 133421. [Google Scholar] [CrossRef]
Index | Storage Time (days) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
Water | 35.10 ± 1.44 aA | 33.30 ± 1.33 aA | 31.97 ± 0.75 abA | 32.45 ± 2.54 abA | 29.98 ± 1.73 bA | |
L* | NaClO | 35.20 ± 0.68 aA | 33.54 ± 0.54 bA | 30.35 ± 1.00 cA | 27.93 ± 0.62 dB | 29.68 ± 0.79 cA |
PT | 34.25 ± 1.31 aA | 34.09 ± 0.50 aA | 33.24 ± 4.01 aA | 31.62 ± 0.23 aA | 32.41 ± 1.87 aA | |
Water | 38.29 ± 0.94 aA | 35.59 ± 3.25 aB | 32.46 ± 6.07 aA | 24.76 ± 5.02 bA | 22.29 ± 2.02 bB | |
a* | NaClO | 37.90 ± 2.10 aA | 35.16 ± 1.54 abA | 33.51 ± 2.12 bA | 27.69 ± 3.70 cA | 24.26 ± 0.76 cB |
PT | 38.14 ± 0.69 abA | 41.3 ± 0.70 Ba | 36.07 ± 3.66 bA | 30.51 ± 0.77 bA | 29.32 ± 2.47 cA | |
Water | 22.06 ± 0.64 aA | 18.05 ± 2.79 abA | 16.18 ± 4.47 bcA | 16.33 ± 3.46 bcA | 11.57 ± 0.53 cA | |
b* | NaClO | 21.52 ± 0.68 aA | 19.21 ± 2.94 aA | 17.92 ± 3.27 abA | 12.47 ± 3.82 bA | 13.53 ± 1.66 bA |
PT | 21.20 ± 0.35 aA | 19.36 ± 3.13 abA | 17.81 ± 4.63 abA | 15.27 ± 1.48 bA | 14.91 ± 2.69 bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Hu, Z.; Zhang, H.; Yu, Z.; Xie, Y. Antimicrobial Effects of Tannic Acid Combined with Plasma-Activated Water and Their Application in Strawberry Preservation. Foods 2025, 14, 2216. https://doi.org/10.3390/foods14132216
Hu Z, Hu Z, Zhang H, Yu Z, Xie Y. Antimicrobial Effects of Tannic Acid Combined with Plasma-Activated Water and Their Application in Strawberry Preservation. Foods. 2025; 14(13):2216. https://doi.org/10.3390/foods14132216
Chicago/Turabian StyleHu, Zhixiang, Zhenyang Hu, Huan Zhang, Zhilong Yu, and Yunfei Xie. 2025. "Antimicrobial Effects of Tannic Acid Combined with Plasma-Activated Water and Their Application in Strawberry Preservation" Foods 14, no. 13: 2216. https://doi.org/10.3390/foods14132216
APA StyleHu, Z., Hu, Z., Zhang, H., Yu, Z., & Xie, Y. (2025). Antimicrobial Effects of Tannic Acid Combined with Plasma-Activated Water and Their Application in Strawberry Preservation. Foods, 14(13), 2216. https://doi.org/10.3390/foods14132216