Effect of Ascorbic Acid Addition on the Phenolic Compounds Content in Homogenates from Aerial Parts of Spearmint, Fennel, and Thyme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparations of Homogenates
2.3. Microbial Analysis
2.4. High-Pressure Processing
2.5. Extraction of Phenolic Compounds from Homogenate
2.6. Extraction of Terpenes from Homogenates
2.7. Determination of Phenolic Compounds
2.8. Determination of Volatile Terpenes
2.9. Statistics
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gökbulut, A.; Şarer, E. Simultaneous Determination of Phenolic Compounds in Mentha spicata L. subsp. Spicata by RP-HPLC. Turk. J. Pharm. Sci. 2010, 7, 249–254. [Google Scholar]
- Bimakr, M.; Rahman, L.A.; Taip, F.S.; Ganjloo, A.; Salleh, L.M.; Selamat, J.; Hamid, A.; Zaidul, I.S.M. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod. Process. 2011, 89, 67–72. [Google Scholar] [CrossRef]
- Saeidi, I.; Hadjmohammadi, M.R.; Peyrovi, M.; Iranshahi, M.; Barfi, B.; Babaei, A.B.; Dust, A.M. HPLC determination of hesperidin, diosmin and eriocitrin in Iranian lime juice using polyamide as an adsorbent for solid phase extraction. J. Pharm. Biomed. Anal. 2011, 56, 419–422. [Google Scholar] [CrossRef]
- Križman, M.; Baričevič, D.; Prošek, M. Determination of phenolic compounds in fennel by HPLC and HPLC–MS using a monolithic reversed-phase column. J. Pharm. Biomed. Anal. 2007, 43, 481–485. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, I.K. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crops Prod. 2013, 44, 437–445. [Google Scholar] [CrossRef]
- Nagy, T.O.; Solar, S.; Sontag, G.; Koenig, J. Identification of phenolic components in dried spices and influence of irradiation. Food Chem. 2011, 128, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, I.K. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Pavela, R.; Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crops Prod. 2018, 113, 46–49. [Google Scholar] [CrossRef]
- Odeh, A.; Allaf, A.W. Determination of polyphenol component fractions and integral antioxidant capacity of Syrian aniseed and fennel seed extracts using GC–MS, HPLC analysis, and photochemiluminescence assay. Chem. Pap. 2017, 71, 1731–1737. [Google Scholar] [CrossRef]
- Agarwal, D.; Saxena, S.N.; Sharma, L.K.; Lal, G. Prevalence of Essential and Fatty Oil Constituents in Fennel (Foeniculum vulgare Mill) Genotypes Grown in Semi-Arid Regions of India. J. Essent. Oil-Bear. Plants 2018, 21, 40–51. [Google Scholar] [CrossRef]
- Najdoska-Bogdanov, M.; Bogdanov, J.B.; Stefova, M. Simultaneous determination of essential oil components and fatty acids in fennel using gas chromatography with a polar capillary column. Nat. Prod. Commun. 2015, 10, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Bakchiche, B.; ALSalamat, H.M.; Rezzoug, M.; Gherib, A.; Flamini, G. Chemical composition, antioxidant, antimicrobial and Antiproliferative activities of essential oil of Mentha spicata L. (Lamiaceae) from Algerian Saharan atlas. BMC Complement. Alter. Med. 2018, 18, 201. [Google Scholar] [CrossRef]
- Bishr, M.M.; Salama, O.M. Inter and intra GC-MS differential analysis of the essential oils of three Mentha species growing in Egypt. Future J. Pharm. Sci. 2018, 4, 53–56. [Google Scholar] [CrossRef]
- Saba, I.; Anwar, F. Effect of harvesting regions on physico-chemical and biological attributes of supercritical fluid-extracted spearmint (Mentha spicata L.) leaves essential oil. J. Essent. Oil Bear. Plants 2018, 21, 400–419. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Comparison of Soxhlet, Accelerated Solvent and Supercritical Fluid Extraction Techniques for Volatile (GC–MS and GC/FID) and Phenolic Compounds (HPLC–ESI/MS/MS) from Lamiaceae Species. Phytochem. Anal. 2015, 26, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med. 2013, 19, 792–800. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef]
- Kim, G.-D.; Park, Y.S.; Jin, Y.-H.; Park, C.-S. Production and applications of rosmarinic acid and structurally related compounds. Appl. Microbiol. Biotechnol. 2015, 99, 2083–2092. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Kukhdan, A.J.; Hosseini, A.; Armand, R. The application of Thymus vulgaris in traditional and modern medicine: A review. Glob. J. Pharmacol. 2015, 9, 260–266. [Google Scholar]
- Kooti, W.; Moradi, M.; Ali-Akbari, S.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Therapeutic and pharmacological potential of Foeniculum vulgare Mill: A review. J. HerbMed. Pharmacol. 2015, 4, 1–9. [Google Scholar]
- Kushwah, P.; Patel, R.; Midda, A.; Kayande, N. Pharmacological review on Foeniculum vulgare. Int. J. Adv. Sci. Res. 2016, 1, 40–42. [Google Scholar]
- Houška, M.; da Silva, V.M. (Eds.) High Pressure Processing of Fruit and Vegetable Products; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Strohalm, J.; Houška, M.; Novotná, P. A Food Preparation Based on Hydrocolloids with the Addition of Mongolian Milkvetch, Chinese Knotweed and Red Sage. Utility Pattern No. 31446, 6 February 2018. [Google Scholar]
- Houška, M.; Strohalm, J.; Kocurová, K.; Totušek, J.; Lefnerová, D.; Tříska, J.; Vrchotová, N.; Fiedrleová, V.; Holasová, M.; Gabrovská, D.; et al. High pressure and foods-fruit/vegetable juices. J. Food Eng. 2006, 77, 386–398. [Google Scholar] [CrossRef]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms Part 1: Colony Count at 30 °C by the Pour plate Technique. Available online: https://www.iso.org/standard/53728.html (accessed on 1 May 2025).
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. Available online: https://www.iso.org/standard/38275.html (accessed on 1 May 2025).
- Dunn, O.J.; Clark, V.A. Applied Statistics: Analysis of Variance and Regression; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1974. [Google Scholar]
- Friedman, M.; Jürgens, H.S. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R. Bioanalytical challenges and strategies for accurately measuring acyl glucuronide metabolites in biological fluids. Biomed. Chromatog. 2020, 34, e4640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef]
- Sanchez-Medina, A.; Etheridge, C.J.; Hawkes, G.E.; Hylands, P.J.; Pendry, B.A.; Hughes, M.J.; Corcoran, O. Comparison of rosmarinic acid content in commercial tinctures produced from fresh and dried lemon balm (Melissa officinalis). J. Pharm. Pharm. Sci. 2007, 10, 455–463. [Google Scholar] [CrossRef]
- Olah, N.K.; Osser, G.; Campean, R.F.; Furtuna, F.R.; Benedec, D.; Filip, L.; Raita, O.; Hanganu, D. The study of polyphenolic compounds profile of some Rosmarinus officinalis L. extracts. Pak. J. Pharm. Sci. 2016, 29 (Suppl. S6), 2355–2361. [Google Scholar]
- Sik, B.; Lakatos, E.H.; Kapcsándi, V.; Székelyhidi, R.; Ajtony, Z. Investigation of the long-term stability of various tinctures belonging to the lamiaceae family by HPLC and spectrophotometry method. Chem. Pap. 2021, 75, 5781–5791. [Google Scholar] [CrossRef]
- Bodalska, A.; Kowalczyk, A.; Fecka, I. Stability of rosmarinic acid and flavonoid glycosides in liquid forms of herbal medicinal products—A preliminary study. Pharmaceuticals 2021, 14, 1139. [Google Scholar] [CrossRef]
- Horablaga, N.M.; Cozma, A.; Alexa, E.; Obistioiu, D.; Cocan, I.; Poiana, M.-A.; Lalescu, D.; Pop, G.; Imbrea, I.M.; Buzna, C. Influence of sample preparation/extraction method on the phytochemicalprofile and antimicrobial activities of 12 commonly consumed medicinal plants in Romania. Appl. Sci. 2023, 13, 2530. [Google Scholar] [CrossRef]
- Čermák, P.; Palečková, V.; Houška, M.; Strohalm, J.; Novotná, P.; Mikyška, A.; Jurková, M.; Sikorová, M. Inhibitory effects of fresh hops on Helicobacter pylori strains. Czech J. Food Sci. 2015, 33, 302–307. [Google Scholar] [CrossRef]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef] [PubMed]
Sample | Sample Composition | pH Value |
---|---|---|
M-1 | 400 g M | 6.17 |
M-2 | 400 g M + 400 g W | 6.60 |
M-3 | 400 g M + 18 g AA | 4.24 |
M-4 | 400 g M + 400 g W + 18 g AA | 4.34 |
F-1 | 400 g F | 5.71 |
F-2 | 400 g F + 200 g W | 5.59 |
F-3 | 348 g F + 30 g W + 6 g AA | 4.17 |
F-4 | 400 g F + 200 g W + 10 g AA | 4.18 |
T-1 | 400 g T | 6.20 |
T-2 | 200 g T + 300 g W | 6.18 |
T-3 | 300 g T + 18 g AA | 3.91 |
T-4 | 400 g T + 600 g W + 24 g AA | 3.91 |
Sample | Time of Storage (Day) | Total Count (CFU/g) at 5 °C | Total Count (CFU/g) at 20 °C |
---|---|---|---|
M-4 | 0 | 1.1 × 103 | 1.1 × 103 |
7 | 1.3 × 103 | 1.1 × 103 | |
14 | 1.1 × 103 | 1.1 × 103 | |
21 | 9.1 × 102 | 9.3 × 102 | |
F-4 | 0 | 8.2 × 101 | 8.2 × 101 |
7 | 7.7 × 102 | 8.0 × 102 | |
14 | 3.7 × 102 | 3.3 × 102 | |
21 | 5.0 × 102 | 1.7 × 102 | |
T-4 | 0 | 6.1 × 101 | 6.1 × 101 |
7 | 3.8 × 102 | 1.4 × 102 | |
14 | 2.3 × 102 | 1.6 × 102 | |
21 | 2.5 × 102 | 1.7 × 102 |
Mentha spicata | Water | Ascorbic Acid | Diosmin | Hesperidin | Rosmarinic Acid | Luteolin | Apigenin | Diosmetin |
---|---|---|---|---|---|---|---|---|
M-1 | 0 | 0 | 12,826 ± 524 abc | 893 ± 46 abc | 122 ± 27 abc | 485 ± 26 abc | 485 ± 17 a | 922 ± 111 abc |
M-2 | water | 0 | 22,364 ± 1039 abc | 1201 ± 66 abc | 95 ± 4 abc | 652 ± 29 abc | 571 ± 60 a | 1888 ± 143 abc |
M-3 | 0 | ascorbic acid | 13,862 ± 842 abc | 2471 ± 144 abc | 66,588 ± 2393 abc | 495 ± 31 abc | 495 ± 46 a | 309 ± 44 abc |
M-4 | water | ascorbic acid | 18,573 ± 571 abc | 1281 ± 106 abc | 33,271 ± 2013 abc | 1000 ± 25 abc | 599 ± 9 a | 720 ± 26 abc |
Foeniculum vulgare | Water | Ascorbic Acid | Chlorogenic Acid | Miquelianin | Quercetin Derivative | 1,5-dicaffeoylquinic Acid | Kaempferol-3-O-Glucuronide | Kaempferol-3-O-Arabinoside |
F-1 | 0 | 0 | n.d. | 527 ± 38 abc | 372 ± 28 ab | n.d. | 495 ± 26 abc | 443 ± 17 abc |
F-2 | water | 0 | n.d. | 555 ± 41 abc | 309 ± 16 ab | 81 ± 18 abc | 481 ± 17 abc | 420 ± 15 abc |
F-3 | 0 | ascorbic acid | 1864 ± 46 abc | 1933 ± 55 abc | 889 ± 23 ab | 716 ± 38 abc | 798 ± 19 abc | 579 ± 17 abc |
F-4 | water | ascorbic acid | 2021 ± 40 abc | 2416 ± 66 abc | 853 ± 28 ab | 617 ± 10 abc | 1098 ± 35 abc | 664 ± 28 abc |
Thymus vulgaris | Water | Ascorbic Acid | Luteolin-7-Glucuronide | Apigenin 7-Glucuronide | Rosmarinic Acid | Rosmarinic Acid Derivative 1 | Rosmarinic Acid Derivative 2 | Caffeoyl-Rosmarinic Acid |
T-1 | 0 | 0 | 563 ± 3 abc | 1476 ± 32 abc | 101 ± 8 abc | n.d. | n.d. | n.d. |
T-2 | water | 0 | 954 ± 81 abc | 2550 ± 280 abc | 196 ± 63 abc | n.d. | n.d. | n.d. |
T-3 | 0 | ascorbic acid | 7476 ± 39 abc | 2608 ± 90 abc | 37,212 ± 992 abc | 3737 ± 212 b | 4098 ± 127 abc | 3061 ± 145 abc |
T-4 | water | ascorbic acid | 8734 ± 84 abc | 3011 ± 89 abc | 33,145 ± 255 abc | 3779 ± 174 b | 4611 ± 97 abc | 2775 ± 44 abc |
Mentha spicata | Water | Ascorbic Acid | β-Pinene | Myrcene | Limonene | Eucalyptol | trans-Caryophyllene | Piperitenone Oxide | |
---|---|---|---|---|---|---|---|---|---|
M-1 | 0 | 0 | 0.337 ± 0.017 ac | 1.090 ± 0.029 abc | 2.517 ± 0.168 ab | 5.443 ± 0.076 b | 1.883 ± 0.125 ac | 83.010 ± 0.403 ac | |
M-2 | water | 0 | 0.350 ± 0.008 ac | 1.140 ± 0.041 abc | 2.583 ± 0.078 ab | 5.563 ± 0.181 b | 1.537 ± 0.024 ac | 82.500 ± 0.268 ac | |
M-3 | 0 | ascorbic acid | 0.313 ± 0.005 ac | 1.170 ± 0.037 abc | 2.623 ± 0.063 ab | 6.007 ± 0.046 b | 1.800 ± 0.033 ac | 83.303 ± 0.172 ac | |
M-4 | water | ascorbic acid | 0.367 ± 0.012 ac | 1.457 ± 0.026 abc | 2.980 ± 0.128 ab | 6.007 ± 0.118 b | 1.720 ± 0.028 ac | 81.890 ± 0.168 ac | |
Foeniculum vulgare | Water | Ascorbic Acid | α-Pinene | Phelandrene | 4-Cymene | Limonene | Fenchone | Estragole | trans-Anethole |
F-1 | 0 | 0 | 0.717 ± 0.005 abc | 1.153 ± 0.005 ac | 0.570 ± 0.008 bc | 0.217 ± 0.005 ab | 1.160 ± 0.033 ab | 0.260 ± 0.014 abc | 95.800 ± 0.059 abc |
F-2 | water | 0 | 0.480 ± 0.054 abc | 0.877 ± 0.052 ac | 0.780 ± 0.078 bc | 0.173 ± 0.017 ab | 1.323 ± 0.068 ab | 0.383 ± 0.009 abc | 95.863 ± 0.130 abc |
F-3 | 0 | ascorbic acid | 0.650 ± 0.008 abc | 1.295 ± 0.004 ac | 0.210 ± 0.008 bc | 0.160 ± 0.000 ab | 0.775 ± 0.029 ab | 0.250 ± 0.024 abc | 96.595 ± 0.061 abc |
F-4 | water | ascorbic acid | 0.257 ± 0.012 abc | 0.817 ± 0.024 ac | 0.110 ± 0.008 bc | 0.110 ± 0.008 ab | 0.750 ± 0.024 ab | 0.223 ± 0.005 abc | 97.650 ± 0.029 abc |
Thymus vulgaris | Water | Ascorbic Acid | 4-Cymene | γ-Terpinene | Linalool | Borneol | Terpinen-4-ol | Thymol | Carvacrol |
T-1 | 0 | 0 | 3.300 ± 0.062 ab | 0.377 ± 0.031 abc | 0.177 ± 0.046 a | 0.230 ± 0.043 a | 0.057 ± 0.017 abc | 88.897 ± 0.893 ac | 2.760 ± 0.228 abc |
T-2 | water | 0 | 2.733 ± 0.070 ab | 0.257 ± 0.012 abc | 0.100 ± 0.000 a | 0.120 ± 0.008 a | 0.027 ± 0.005 abc | 91.180 ± 0.204 ac | 2.510 ± 0.070 abc |
T-3 | 0 | ascorbic acid | 1.147 ± 0.021 ab | 2.243 ± 0.108 abc | 0.207 ± 0.029 a | 0.220 ± 0.033 a | 0.313 ± 0.025 abc | 86.267 ± 1.319 ac | 3.967 ± 0.180 abc |
T-4 | water | ascorbic acid | 0.593 ± 0.056 ab | 1.510 ± 0.104 abc | 0.090 ± 0.000 a | 0.100 ± 0.000 a | 0.200 ± 0.000 abc | 92.663 ± 0.081 ac | 2.750 ± 0.273 abc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tříska, J.; Vrchotová, N.; Strohalm, J.; Houška, M.; Kováříková, E.; Novotná, P.; Bednář, J.; Pavela, R. Effect of Ascorbic Acid Addition on the Phenolic Compounds Content in Homogenates from Aerial Parts of Spearmint, Fennel, and Thyme. Foods 2025, 14, 2165. https://doi.org/10.3390/foods14132165
Tříska J, Vrchotová N, Strohalm J, Houška M, Kováříková E, Novotná P, Bednář J, Pavela R. Effect of Ascorbic Acid Addition on the Phenolic Compounds Content in Homogenates from Aerial Parts of Spearmint, Fennel, and Thyme. Foods. 2025; 14(13):2165. https://doi.org/10.3390/foods14132165
Chicago/Turabian StyleTříska, Jan, Naděžda Vrchotová, Jan Strohalm, Milan Houška, Eliška Kováříková, Pavla Novotná, Jan Bednář, and Roman Pavela. 2025. "Effect of Ascorbic Acid Addition on the Phenolic Compounds Content in Homogenates from Aerial Parts of Spearmint, Fennel, and Thyme" Foods 14, no. 13: 2165. https://doi.org/10.3390/foods14132165
APA StyleTříska, J., Vrchotová, N., Strohalm, J., Houška, M., Kováříková, E., Novotná, P., Bednář, J., & Pavela, R. (2025). Effect of Ascorbic Acid Addition on the Phenolic Compounds Content in Homogenates from Aerial Parts of Spearmint, Fennel, and Thyme. Foods, 14(13), 2165. https://doi.org/10.3390/foods14132165