Design of Ready-to-Use “Ball-in-Ball” Staphylococcus aureus Microsphere Based on Novel Cryoprotectant and Drop Freeze-Drying Technology: Effective Preservation and Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of Cryoprotectant
2.2.1. Preparation of S. aureus
2.2.2. Evaluation of Single Cryoprotectant
2.2.3. Design of Composite Cryoprotectant
2.3. Process of Microsphere Preparation
2.4. Optimization of Microsphere Parameters
2.5. Characterization of S. aureus Microsphere
2.6. Performance Evaluation of S. aureus Microsphere
2.6.1. Moisture Content
2.6.2. Uniformity
2.6.3. Stability
2.6.4. Solubility
2.7. Application of S. aureus Microsphere
2.8. Applicability of Preparation Process
3. Results and Discussion
3.1. Design of Cryoprotectant
3.1.1. Evaluation of Single Cryoprotectant
3.1.2. Design of Composite Cryoprotectant
6.71A2 − 10.28B2 − 3.99C2 − 6.15D2
3.2. Optimization of Microsphere Parameters
3.3. Characterization of S. aureus Microsphere
3.4. Performance Evaluation of S. aureus Microsphere
3.5. Application of S. aureus Microsphere
3.6. Applicability of Preparation Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
S. aureus | Staphylococcus aureus |
E. coli | Escherichia coli |
TRE | D(+)-Trehalose dihydrate |
GLU | L-(+)Sodium glutamate |
SMP | Skimmed milk powder |
AG | Arabic gum |
PEG | Polyethylene glycol |
BSA | Bovine serum albumin |
PVP | Polyvinylpyrrolidone |
TP | Tremella polysaccharide |
OD | Optical density |
SEM | Scanning electron microscope |
TEM | Transmission electron microscope |
DSC | Differential scanning calorimetry |
CV | Coefficient of variation |
References
- Frank, C.; Werber, D.; Cramer, J.P.; Askar, M.; Faber, M.; An Der Heiden, M.; Bernard, H.; Fruth, A.; Prager, R.; Spode, A.; et al. Epidemic Profile of Shiga-Toxin–Producing Escherichia coli O104:H4 Outbreak in Germany. N. Engl. J. Med. 2011, 365, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Siddique, A.; Liu, N.; Teng, L.; Ed-Dra, A.; Yue, M.; Li, Y. Global Epidemiology and health risks of Bacillus cereus Infections: Special focus on infant foods. Food Res. Int. 2025, 201, 115650. [Google Scholar] [CrossRef] [PubMed]
- Long, L.J.; Lin, M.; Chen, Y.R.; Meng, X.; Cui, T.T.; Li, Y.P.; Guo, X.G. Evaluation of the loop-mediated isothermal amplification assay for Staphylococcus aureus detection: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 27. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, H.; Huang, J.; Dai, Y.; Liu, Y.; Zhou, X.; Li, X.; Pang, X.; Sun, J.; Lu, Y. Development of dual polymerase spiral reaction for detection of Listeria monocytogenes and Staphylococcus aureus simultaneously. Int. J. Food Microbiol. 2025, 430, 111055. [Google Scholar] [CrossRef]
- Güven, E.; Azizoglu, R.O. The Recent Original Perspectives on Nonculture-Based Bacteria Detection Methods: A Comprehensive Review. Foodborne Pathog. Dis. 2022, 19, 425–440. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, X.; Jiao, J.; Yan, C.; Liu, K.; Chen, W.; Qin, P. CRISPR/dCas9-based hotspot self-assembling SERS biosensor integrated with a smartphone for simultaneous, ultrasensitive and robust detection of multiple pathogens. Biosens. Bioelectron. 2025, 270, 116974. [Google Scholar] [CrossRef]
- Yang, L.; Ding, Y.; Ma, Y.; Wen, J.; Wang, J.; Dai, G.; Mo, F. An electrochemical sensor based on 2D Zn-MOFs and 2D C-Ti3C2Tx composite materials for rapid and direct detection of various foodborne pathogens. Food Chem. 2025, 462, 140922. [Google Scholar] [CrossRef]
- Albashir, D.; Lu, H.; Gouda, M.; Acharya, D.R.; Danhassan, U.A.; Bakur, A.; Shi, Y.; Chen, Q. A novel polydiacetylene-functionalized fibrinogen paper-based biosensor for on-spot and rapid detection of Staphylococcus aureus. Food Chem. 2024, 458, 140291. [Google Scholar] [CrossRef]
- Dai, J.; Li, J.; Jiao, Y.; Yang, X.; Yang, D.; Zhong, Z.; Li, H.; Yang, Y. Colorimetric-SERS dual-mode aptasensor for Staphylococcus aureus based on MnO2@AuNPs oxidase-like activity. Food Chem. 2024, 456, 139955. [Google Scholar] [CrossRef]
- Li, X.; Che, L.; Wu, Y.; Li, C.; Xu, B. An effective strategy for improving the freeze-drying survival rate of Lactobacillus curvatus and its potential protective mechanism. Food Biosci. 2024, 58, 103794. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Pu, J.; Wu, Y.; Xiong, Z.; Song, X.; Zhang, H.; Ai, L.; Wang, G. The protective effect of oleic acid on Lactiplantibacillus plantarum during freeze-drying. Food Sci. Human Wellness. 2023, 12, 2355–2361. [Google Scholar] [CrossRef]
- Ge, S.; Han, J.; Sun, Q.; Ye, Z.; Zhou, Q.; Li, P.; Gu, Q. Optimization of cryoprotectants for improving the freeze-dried survival rate of potential probiotic Lactococcus lactis ZFM559 and evaluation of its storage stability. LWT 2024, 198, 116052. [Google Scholar] [CrossRef]
- Chen, W.; Chen, K.; Sheu, D.; Surampalli, R.; Kao, C.M. Development of a Novel Lyophilization Method for the Production of Bacterial Strain Powders to Enhance the Cleanup Efficiency of Petroleum Hydrocarbon–Polluted Soils. J. Environ. Eng.-Asce. 2025, 151, 04024071. [Google Scholar] [CrossRef]
- Fan, X.; Shi, Y.; Li, R.; Yang, R.; Yang, X.; Hang, F.; Zhang, H.; Chen, W. Preliminary study on the effect of pre-freezing methods on lyophilization quality and storage stability of probiotics. Dry. Technol. 2024, 42, 1480–1492. [Google Scholar] [CrossRef]
- Chen, P.; Tan, W.; Cheng, H.; Chen, S.; Ye, X.; Chen, J. The protective effect of freezing temperatures on different lactic acid bacteria and its mechanism. LWT 2025, 215, 117226. [Google Scholar] [CrossRef]
- Li, H.; van den Driesche, S.; Bunge, F.; Yang, B.; Vellekoop, M.J. Optimization of on-chip bacterial culture conditions using the Box-Behnken design response surface methodology for faster drug susceptibility screening. Talanta 2019, 194, 627–633. [Google Scholar] [CrossRef]
- Asai, R.; Kondo, K.; Kato, R.; Kajiwara, K.; Niwa, T. Design of easily swallowable xerogel pill with enough physical strength through hardening-process under heating and humidification. Int. J. Pharm. 2024, 660, 124282. [Google Scholar] [CrossRef]
- Bobrova, O.; Falko, O.; Polyakova, A.; Klochkov, V.; Faltus, M.; Chizhevskiy, V. Nanocrystalline cerium dioxide reduces recrystallization in cryopreservation solutions. Cryobiology 2024, 118, 105167. [Google Scholar] [CrossRef]
- Huang, X.; Chen, L.; Zhi, W.; Zeng, R.; Ji, G.; Cai, H.; Xu, J.; Wang, J.; Chen, S.; Tang, Y.; et al. Urchin-Shaped Au-Ag@Pt Sensor Integrated Lateral Flow Immunoassay for Multimodal Detection and Specific Discrimination of Clinical Multiple Bacterial Infections. Anal. Chem. 2023, 95, 13101–13112. [Google Scholar] [CrossRef]
- Dou, X.; Zhang, Z.; Li, C.; Du, Y.; Tian, F. A novel nanoparticle-based fluorescent sandwich immunoassay for specific detection of Salmonella Typhimurium. Int. J. Food Microbiol. 2024, 413, 110593. [Google Scholar] [CrossRef] [PubMed]
- Hubalek, Z. Protectants used in the cryopreservation of microorganisms. Cryobiology 2003, 46, 205–229. [Google Scholar] [CrossRef] [PubMed]
- Jena, S.; Krishna Kumar, N.S.; Aksan, A.; Suryanarayanan, R. Stability of lyophilized albumin formulations: Role of excipient crystallinity and molecular mobility. Int. J. Pharm. 2019, 569, 118568. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Li, P.; Feng, X.; Mao, Z.; Wei, J.; Lin, X.; Li, X.; Wang, L. Exploring the protective effects of freeze-dried Lactobacillus rhamnosus under optimized cryoprotectants formulation. LWT 2023, 173, 114295. [Google Scholar] [CrossRef]
- Chang, T.; Zhao, G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Adv. Sci. 2021, 8, 2002425. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Chen, B.; Zhu, K.; Ren, L.; Yuan, X. Development of Macromolecular Cryoprotectants for Cryopreservation of Cells. Macromol. Rapid Commun. 2024, 45, e2400309. [Google Scholar] [CrossRef]
- Kenawy, E.R.; Kamoun, E.A.; Shehata, A.; El-Moslamy, S.H.; Abdel-Rahman, A.A. Biosynthesized ZnO NPs loaded-electrospun PVA/sodium alginate/glycine nanofibers: Synthesis, spinning optimization and antimicrobial activity evaluation. Sci. Rep. 2025, 15, 1882. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, P.; Huang, R.; Huang, J.; Zhan, J.; Su, J.; You, R.; Lu, Y. Biomacromolecular composite microspheres based on sodium alginate and tremella fuciformis polysaccharide for enhanced protection and delivery of camellia oil: A comprehensive study in simulated digestion. Int. J. Biol. Macromol. 2025, 310, 143481. [Google Scholar] [CrossRef]
- Hatami, M.; Khorasani, M.T.; Ahmadi, E.; Mohamadnia, S. Preparation and characterization of advancing wound care with PVP/QCS/DEX hydrogels: A multifunctional wound dressing composite: In vitro and in vivo assay. J. Biomater. Sci. Polym. Ed. 2025, 1–31. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, J.; Sun, W.; Zhang, Y.; Li, W.; Wang, Y.; Zhou, C.; He, Y.; Qin, J. Antibacterial betaine modified chitosan-based hydrogel with angiogenic property for photothermal enhanced diabetic wound repairing. Carbohydr. Polym. 2025, 349, 123033. [Google Scholar] [CrossRef] [PubMed]
- Bodzen, A.; Jossier, A.; Dupont, S.; Mousset, P.Y.; Beney, L.; Lafay, S.; Gervais, P. Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage. BMC Biotechnol. 2021, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Tutrina, A.; Zhurilov, P. Efficacy assessment of different cryoprotectants for preserving the viability of Enterobacterales strains at −20 °C. Sci. Rep. 2024, 14, 20843. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto-Shinohara, Y.; Imaizumi, T.; Sukenobe, J.; Murakami, Y.; Kawamura, S.; Komatsu, Y. Survival rate of microbes after freeze-drying and long-term storage. Cryobiology 2000, 41, 251–255. [Google Scholar] [CrossRef]
- Miyamoto-Shinohara, Y.; Sukenobe, J.; Imaizumi, T.; Nakahara, T. Survival of freeze-dried bacteria. J. Gen. Appl. Microbiol. 2008, 54, 9–24. [Google Scholar] [CrossRef]
- Navarta, L.G.; Calvo, J.; Posetto, P.; Benuzzi, D.; Sanz, M.I. Freeze-drying of a mixture of bacterium and yeast for application in postharvest control of pathogenic fungi. Sn Appl. Sci. 2020, 2, 1223. [Google Scholar] [CrossRef]
Level | Factors | |||
---|---|---|---|---|
A: BSA (%) | B: TRE (%) | C: PEG 8000 (%) | D: D-Mannitol (%) | |
−1 | 1 | 2 | 6 | 3 |
0 | 2 | 4 | 8 | 4 |
1 | 3 | 6 | 10 | 5 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1292.38 | 14 | 92.31 | 14.85 | <0.0001 | Significant |
A | 174.88 | 1 | 174.88 | 28.12 | 0.0001 | |
B | 0.2821 | 1 | 0.2821 | 0.0454 | 0.8344 | |
C | 48.56 | 1 | 48.56 | 7.81 | 0.0143 | |
D | 5.95 | 1 | 5.95 | 0.9569 | 0.3446 | |
AB | 26.52 | 1 | 26.52 | 4.27 | 0.0579 | |
AC | 0.5929 | 1 | 0.5929 | 0.0953 | 0.7620 | |
AD | 4.35 | 1 | 4.35 | 0.6991 | 0.4171 | |
BC | 11.49 | 1 | 11.49 | 1.85 | 0.1955 | |
BD | 61.94 | 1 | 61.94 | 9.96 | 0.0070 | |
CD | 33.06 | 1 | 33.06 | 5.32 | 0.0369 | |
A2 | 291.82 | 1 | 291.82 | 46.93 | <0.0001 | |
B2 | 685.29 | 1 | 685.29 | 110.21 | <0.0001 | |
C2 | 103.45 | 1 | 103.45 | 16.64 | 0.0011 | |
D2 | 245.52 | 1 | 245.52 | 39.48 | <0.0001 | |
Residual | 87.06 | 14 | 6.22 | |||
Lack of fit | 67.79 | 10 | 6.78 | 1.41 | 0.3969 | Not significant |
Pure Error | 19.27 | 4 | 4.82 | |||
Cor Total | 1379.43 | 28 |
Sample | Added Level of S. aureus (CFU/mL) | Recovery Rate (%) |
---|---|---|
Milk | 101 | 81.5 ± 2.7 |
102 | 86.9 ± 1.3 | |
103 | 80.0 ± 7.4 | |
Green tea | 101 | 93.7 ± 3.2 |
102 | 83.1 ± 4.9 | |
103 | 83.8 ± 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Chen, D.; Zheng, X.; Li, Y.; Jiang, S.; Chen, Y.; Jia, J.; Yu, L.; Peng, T. Design of Ready-to-Use “Ball-in-Ball” Staphylococcus aureus Microsphere Based on Novel Cryoprotectant and Drop Freeze-Drying Technology: Effective Preservation and Application. Foods 2025, 14, 2142. https://doi.org/10.3390/foods14122142
Wang Z, Chen D, Zheng X, Li Y, Jiang S, Chen Y, Jia J, Yu L, Peng T. Design of Ready-to-Use “Ball-in-Ball” Staphylococcus aureus Microsphere Based on Novel Cryoprotectant and Drop Freeze-Drying Technology: Effective Preservation and Application. Foods. 2025; 14(12):2142. https://doi.org/10.3390/foods14122142
Chicago/Turabian StyleWang, Zile, Dongdong Chen, Xiaomei Zheng, Yuqing Li, Shaoqian Jiang, Yanfei Chen, Jingjian Jia, Libo Yu, and Tao Peng. 2025. "Design of Ready-to-Use “Ball-in-Ball” Staphylococcus aureus Microsphere Based on Novel Cryoprotectant and Drop Freeze-Drying Technology: Effective Preservation and Application" Foods 14, no. 12: 2142. https://doi.org/10.3390/foods14122142
APA StyleWang, Z., Chen, D., Zheng, X., Li, Y., Jiang, S., Chen, Y., Jia, J., Yu, L., & Peng, T. (2025). Design of Ready-to-Use “Ball-in-Ball” Staphylococcus aureus Microsphere Based on Novel Cryoprotectant and Drop Freeze-Drying Technology: Effective Preservation and Application. Foods, 14(12), 2142. https://doi.org/10.3390/foods14122142