Red Meat Consumption, Iron Status, and Cardiometabolic Risk in Qatari Adults: A Cross-Sectional Gender-Stratified Analysis from the QPHI-QBB Data in Qatar
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Ethical Considerations
2.3. Study Population
2.4. Anthropometric Measurements
2.5. Biochemical Measurements
2.6. Dietary Assessment
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Participants
3.2. Hematological Parameters Across Red Meat Consumption Levels
3.3. Metabolic Parameters and Vitamin Levels Across Red Meat Consumption Levels
3.4. Adjusted Associations of Red Meat Consumption with Hematological Parameters
4. Discussion
5. Study Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buzała, M.; Słomka, A.; Janicki, B. Heme iron in meat as the main source of iron in the human diet. J. Elem. 2016, 21, 303–314. [Google Scholar] [CrossRef]
- Fairweather-Tait, S. The role of meat in iron nutrition of vulnerable groups of the UK population. Front. Anim. Sci. 2023, 4, 1142252. [Google Scholar] [CrossRef]
- Thomas, C.; Lumb, A.B. Physiology of haemoglobin. Contin. Educ. Anaesth. Crit. Care Pain 2012, 12, 251–256. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Clonan, A.; Roberts, K.E.; Holdsworth, M. Socioeconomic and demographic drivers of red and processed meat consumption: Implications for health and environmental sustainability. Proc. Nutr. Soc. 2016, 75, 367–373. [Google Scholar] [CrossRef]
- Allegra, S.; Comità, S.; Roetto, A.; De Francia, S. Sex and Gender Differences in Iron Chelation. Biomedicines 2024, 12, 2885. [Google Scholar] [CrossRef] [PubMed]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef] [PubMed]
- Luan, D.; Wang, D.; Campos, H.; Baylin, A. Red meat consumption and metabolic syndrome in the Costa Rica Heart Study. Eur. J. Nutr. 2020, 59, 185–193. [Google Scholar] [CrossRef]
- Pan, L.; Chen, L.; Lv, J.; Pang, Y.; Guo, Y.; Pei, P.; Du, H.; Yang, L.; Millwood, I.Y.; Walters, R.G.; et al. Association of Red Meat Consumption, Metabolic Markers, and Risk of Cardiovascular Diseases. Front. Nutr. 2022, 9, 833271. [Google Scholar] [CrossRef]
- Ma, H.; Qi, X. Red Meat Consumption and Cancer Risk: A Systematic Analysis of Global Data. Foods 2023, 12, 4164. [Google Scholar] [CrossRef]
- Khodayari, S.; Sadeghi, O.; Safabakhsh, M.; Mozaffari-Khosravi, H. Meat consumption and the risk of general and central obesity: The Shahedieh study. BMC Res. Notes 2022, 15, 339. [Google Scholar] [CrossRef]
- Pacheco, D.A.; Sookthai, D.; Wittenbecher, C.; Graf, M.E.; Schübel, R.; Johnson, T.; Katzke, V.; Jakszyn, P.; Kaaks, R.; Kühn, T. Red meat consumption and risk of cardiovascular diseases-is increased iron load a possible link? Am. J. Clin. Nutr. 2018, 107, 113–119. [Google Scholar] [CrossRef]
- Arage, G.; Dekkers, K.F.; Rašo, L.M.; Hammar, U.; Ericson, U.; Larsson, S.C.; Engel, H.; Baldanzi, G.; Pertiwi, K.; Sayols-Baixeras, S.; et al. Plasma metabolite profiles of meat intake and their association with cardiovascular disease risk: A population-based study in Swedish cohorts. Metabolism 2025, 168, 156188. [Google Scholar] [CrossRef]
- Perna, M.; Hewlings, S. Saturated Fatty Acid Chain Length and Risk of Cardiovascular Disease: A Systematic Review. Nutrients 2022, 15, 30. [Google Scholar] [CrossRef]
- Al-Thani, M.; Al-Thani, A.A.; Al-Mahdi, N.; Al-Kareem, H.; Barakat, D.; Al-Chetachi, W.; Tawfik, A.; Akram, H. An Overview of Food Patterns and Diet Quality in Qatar: Findings from the National Household Income Expenditure Survey. Cureus 2017, 9, e1249. [Google Scholar] [CrossRef]
- Al Thani, A.; Fthenou, E.; Paparrodopoulos, S.; Al Marri, A.; Shi, Z.; Qafoud, F.; Afifi, N. Qatar Biobank Cohort Study: Study Design and First Results. Am. J. Epidemiol. 2019, 188, 1420–1433. [Google Scholar] [CrossRef] [PubMed]
- Qatar Public Health Institute. QPHI Population-Based Study. Available online: https://www.qphi.org.qa/research/qphi-population-based-study (accessed on 2 March 2025).
- Al-Naseem, A.; Sallam, A.; Choudhury, S.; Thachil, J. Iron deficiency without anaemia: A diagnosis that matters. Clin. Med. 2021, 21, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Al Kuwari, H.; Al Thani, A.; Al Marri, A.; Al Kaabi, A.; Abderrahim, H.; Afifi, N.; Qafoud, F.; Chan, Q.; Tzoulaki, I.; Downey, P.; et al. The Qatar Biobank: Background and methods. BMC Public Health 2015, 15, 1208. [Google Scholar] [CrossRef]
- West, A.R.; Oates, P.S. Mechanisms of heme iron absorption: Current questions and controversies. World J. Gastroenterol. 2008, 14, 4101–4110. [Google Scholar] [CrossRef]
- Herran, O.F.; Bermúdez, J.N.; Del Pilar Zea, M. Red meat and egg intake and serum ferritin concentrations in Colombian children: Results of a population survey, ENSIN-2015. J. Nutr. Sci. 2020, 9, e12. [Google Scholar] [CrossRef]
- Hamad, A.; Singh, P. Boosting nutritional value: The role of iron fortification in meat and meat products. BioMetals 2025, 38, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Tajima, S.; Izawa-Ishizawa, Y.; Kihira, Y.; Ishizawa, K.; Tomita, S.; Tsuchiya, K.; Tamaki, T. Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes. PLoS ONE 2012, 7, e40465. [Google Scholar] [CrossRef]
- Torti, F.M.; Torti, S.V. Regulation of ferritin genes and protein. Blood 2002, 99, 3505–3516. [Google Scholar] [CrossRef]
- Faruqi, A.; Zubair, M.; Mukkamalla, S.K.R. Iron-Binding Capacity. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2025. [Google Scholar]
- Shah, Y.M.; Xie, L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology 2014, 146, 630–642. [Google Scholar] [CrossRef]
- Pfeiffer, C.M.; Looker, A.C. Laboratory methodologies for indicators of iron status: Strengths, limitations, and analytical challenges. Am. J. Clin. Nutr. 2017, 106, 1606s–1614s. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 2009, 122, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Short, M.W.; Domagalski, J.E. Iron deficiency anemia: Evaluation and management. Am. Fam. Physician 2013, 87, 98–104. [Google Scholar]
- Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 2015, 372, 1832–1843. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461s–1467s. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Hepcidin and disorders of iron metabolism. Annu. Rev. Med. 2011, 62, 347–360. [Google Scholar] [CrossRef]
- Brown, M.S.; Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 1986, 232, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Gulec, S.; Erol, C. High-density lipoprotein cholesterol and risk of cardiovascular disease. e-J. Cardiol. Pract. 2020, 19, 133–134. [Google Scholar]
- Rader, D.J. Molecular regulation of HDL metabolism and function: Implications for novel therapies. J. Clin. Investig. 2006, 116, 3090–3100. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Shin, S. Red meat and processed meat consumption and the risk of dyslipidemia in Korean adults: A prospective cohort study based on the Health Examinees (HEXA) study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1714–1727. [Google Scholar] [CrossRef]
- Zeraatkar, D.; Han, M.A.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Cheung, K.; Milio, K.; Zworth, M.; Bartoszko, J.J.; Valli, C.; et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 703–710. [Google Scholar] [CrossRef]
- Knovich, M.A.; Storey, J.A.; Coffman, L.G.; Torti, S.V.; Torti, F.M. Ferritin for the clinician. Blood Rev. 2009, 23, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; O’Sullivan, S.M.; Galvin, K.; Ryan, M. Contribution of Vitamin D2 and D3 and Their Respective 25-Hydroxy Metabolites to the Total Vitamin D Content of Beef and Lamb. Curr. Dev. Nutr. 2020, 4, nzaa112. [Google Scholar] [CrossRef]
- Cashman, K.D.; Hayes, A. Red meat’s role in addressing ‘nutrients of public health concern’. Meat Sci. 2017, 132, 196–203. [Google Scholar] [CrossRef]
- Urbanski, G.; Chabrun, F.; Lavigne, C.; Lacout, C.; Delattre, E.; Reynier, P.; Requin, J. Serum ferritin/C-reactive protein ratio is a simple and effective biomarker for diagnosing iron deficiency in the context of systemic inflammation. QJM 2024, 117, 9–15. [Google Scholar] [CrossRef]
- Wang, X.; Magkos, F.; Mittendorfer, B. Sex differences in lipid and lipoprotein metabolism: It’s not just about sex hormones. J. Clin. Endocrinol. Metab. 2011, 96, 885–893. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Kim, J.E.; Campbell, W.W. Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: A systemically searched meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 105, 57–69. [Google Scholar] [CrossRef] [PubMed]
- McRae, M.P. Dietary Fiber Is Beneficial for the Prevention of Cardiovascular Disease: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2017, 16, 289–299. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Lester, S.E.; Babatunde, T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: A review of literature. Eur. J. Clin. Nutr. 2014, 68, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.D.; Reddy, M.B. Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. Am. J. Clin. Nutr. 2001, 73, 93–98. [Google Scholar] [CrossRef]
- Hallberg, L.; Brune, M.; Rossander, L. Effect of ascorbic acid on iron absorption from different types of meals. Studies with ascorbic-acid-rich foods and synthetic ascorbic acid given in different amounts with different meals. Hum. Nutr. Appl. Nutr. 1986, 40, 97–113. [Google Scholar]
- Hattangadi, S.M.; Wong, P.; Zhang, L.; Flygare, J.; Lodish, H.F. From stem cell to red cell: Regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 2011, 118, 6258–6268. [Google Scholar] [CrossRef]
- Goodnough, L.T.; Nemeth, E.; Ganz, T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood 2010, 116, 4754–4761. [Google Scholar] [CrossRef]
- Galal, O. Nutrition-related health patterns in the Middle East. Asia Pac. J. Clin. Nutr. 2003, 12, 337–343. [Google Scholar]
- Al-Mana, N.M.; Zareef, T.A.; Albathi, F.A.; Awney, H.A.; Baeshen, F.; Abdullah, R. Exploring lifestyle and dietary pattern shifts among Saudi adults during COVID-19 pandemic: Insights from a cross-sectional examination. Front. Nutr. 2024, 11, 1489160. [Google Scholar] [CrossRef]
- Alfhili, M.A.; Basudan, A.M.; Alfaifi, M.; Awan, Z.A.; Algethami, M.R.; Alsughayyir, J. Patterns of 25-Hydroxyvitamin D3, Calcium Status, and Anemia in the Saudi Population: A Cross-Sectional Study. Life 2022, 12, 2119. [Google Scholar] [CrossRef] [PubMed]
- Al-Jamea, L.H.; Woodman, A.; Heiba, N.M.; Elshazly, S.A.; Khalaf, N.B.; Fathallah, D.M.; Al-Nashmi, M.E.; Quiambao, J.V.; Deifalla, A.H. Genetic analysis of TMPRSS6 gene in Saudi female patients with iron deficiency anemia. Hematol. Oncol. Stem Cell Ther. 2021, 14, 41–50. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Gender | p-Value (Gender) | Red Meat Consumption | p-Value (Meat) | |||
---|---|---|---|---|---|---|---|
Males (n = 5760) | Females (n = 7987) | Low (n = 1612) | Moderate (n = 10,809) | High (n = 1326) | |||
Age (years, mean ± SD) | 47.9 ± 9.7 | 48.5 ± 9.5 | 0.0003 * | 48.3 ± 9.6 | 48.2 ± 9.7 | 48.5 ± 9.5 | 0.5945 ** |
BMI (kg/m2, mean ± SD) | 29.5 ± 5.1 | 31.9 ± 6.0 | <0.0001 * | 30.8 ± 5.8 | 30.8 ± 5.8 | 30.9 ± 5.6 | 0.9499 ** |
% (n) | |||||||
Employment Status | |||||||
| 81.6 (4455) | - | - | 81.3 (523) | 81.7 (3500) | 81.6 (432) | 0.8960 *** |
| - | 49.4 (3888) | - | 49.1 (472) | 49.5 (3020) | 49.2 (396) | 0.9280 *** |
Education | <0.0001 *** | 0.9830 *** | |||||
| 49.9 (2819) | 44.0 (3516) | 45.3 (730) | 46.6 (5032) | 45.8 (605) | ||
| 3.1 (180) | 9.3 (740) | 6.8 (110) | 6.7 (724) | 6.5 (86) | 0.5360 *** | |
Smoking Status | <0.0001 *** | 0.3190 *** | |||||
| 30.0 (1733) | 25.0 (2000) | 71.2 (1147) | 70.2 (7585) | 71.1 (940) | ||
Medical Conditions | |||||||
| 23.9 (1365) | 27.9 (2227) | <0.0001 *** | 27.8 (446) | 25.8 (2783) | 27.5 (363) | 0.1380 *** |
| 40.1 (2297) | 36.2 (2890) | <0.0001 *** | 38.4 (616) | 37.7 (4066) | 38.3 (505) | 0.8440 *** |
| 22.2 (1262) | 21.9 (1749) | 0.8450 *** | 20.8 (334) | 22.0 (2376) | 22.8 (301) | 0.3950 *** |
Supplementation Status | |||||||
| 4.6 (266) | 21.7 (1731) | <0.0001 *** | 14.8 (239) | 14.4 (1562) | 14.8 (196) | 0.8890 *** |
| 4.1 (236) | 10.0 (796) | <0.0001 *** | 7.3 (118) | 7.6 (819) | 7.2 (95) | 0.8260 *** |
| 6.8 (393) | 8.4 (670) | 0.0010 *** | 6.1 (98) | 7.9 (856) | 8.2 (109) | 0.0280 *** |
Biomarker | No Supplementation (n = 11,750, 85.5%) | Iron Supplementation (n = 1997, 14.5%) | p-Value |
---|---|---|---|
TIBC (µg/dL) | 67.8 ± 11.8 | 67.2 ± 11.7 | 0.0355 |
Iron (µg/dL) | 14.7 ± 6.4 | 14.9 ± 6.3 | 0.1598 |
Ferritin (ng/mL) | 88.9 ± 120.2 | 94.6 ± 117.2 | 0.0456 |
Hgb (g/dL) | 13.6 ± 1.7 | 12.4 ± 1.6 | <0.0001 |
Parameter | Red Meat Consumption | Males (Mean ± SD) | Females (Mean ± SD) | p-Value * (Gender) |
---|---|---|---|---|
Hgb (g/dL) | Low | 14.8 ± 1.2 a | 12.4 ± 1.4 a | <0.0001 |
Moderate | 14.9 ± 1.2 a | 12.5 ± 1.3 a | <0.0001 | |
High | 14.8 ± 1.3 a | 12.4 ± 1.3 a | <0.0001 | |
p-value ** | 0.8955 | 0.6939 | ||
TIBC (µmol/L) | Low | 67.7 ± 11.6 a | 68.6 ± 12.3 a | 0.1775 |
Moderate | 67.8 ± 11.7 a | 68.1 ± 11.8 a | 0.1590 | |
High | 64.9 ± 11.4 b | 65.1 ± 11.4 b | 0.6558 | |
p-value ** | 0.0001 | 0.0001 | ||
Ferritin (µg/L) | Low | 72.3 ± 78.3 a | 76.2 ± 81.0 a | 0.3422 |
Moderate | 76.2 ± 77.9 a | 77.1 ± 79.2 a | 0.5232 | |
High | 218.1 ± 293.4 b | 214.3 ± 257.8 b | 0.8037 | |
p-value ** | 0.0001 | 0.0001 | ||
Iron (µg/dL) | Low | 14.2 ± 6.1 a | 14.4 ± 6.0 a | 0.5980 |
Moderate | 14.6 ± 6.3 a | 14.6 ± 6.4 a | 0.6387 | |
High | 16.0 ± 6.7 b | 16.3 ± 7.4 b | 0.5405 | |
p-value ** | 0.0001 | 0.0001 |
Parameter | Red Meat Consumption | Males (Mean ± SD) | Females (Mean ± SD) | p-Value * (Gender) |
---|---|---|---|---|
Cholesterol (mmol/L) | Low | 5.1 ± 1.0 a | 5.0 ± 0.9 a | 0.1013 |
Moderate | 5.1 ± 1.0 a | 5.1 ± 1.0 a | 0.5421 | |
High | 5.2 ± 1.1 a | 5.0 ± 1.0 a | 0.0125 | |
p-value ** | 0.0963 | 0.1358 | ||
HDL (mmol/L) | Low | 1.4 ± 0.4 a | 1.4 ± 0.4 a | 0.3703 |
Moderate | 1.4 ± 0.4 a | 1.4 ± 0.4 a | 0.5318 | |
High | 1.4 ± 0.4 b | 1.4 ± 0.4 b | 0.3987 | |
p-value ** | 0.0004 | 0.0031 | ||
Triglyceride (mmol/L) | Low | 1.4 ± 0.8 a | 1.4 ± 0.7 a | 0.9749 |
Moderate | 1.4 ± 0.8 a | 1.4 ± 0.8 a | 0.4093 | |
High | 1.5 ± 1.0 b | 1.5 ± 0.9 b | 0.4294 | |
p-value ** | 0.0070 | 0.0179 | ||
LDL (mmol/L) | Low | 3.0 ± 0.9 a | 3.0 ± 0.8 a | 0.1602 |
Moderate | 3.0 ± 0.9 a | 3.0 ± 0.9 a | 0.5160 | |
High | 3.1 ± 1.0 b | 2.9 ± 0.9 a | 0.0008 | |
p-value ** | 0.0120 | 0.1240 | ||
Glucose (mmol/L) | Low | 6.0 ± 2.8 a | 5.9 ± 2.3 a | 0.3557 |
Moderate | 5.9 ± 2.2 ab | 6.0 ± 2.5 a | 0.0566 | |
High | 6.2 ± 2.6 ac | 6.4 ± 3.0 b | 0.0897 | |
p-value ** | 0.0277 | 0.0001 | ||
Insulin (µIU/mL) | Low | 14.4 ± 14.6 a | 13.6 ± 12.2 a | 0.2353 |
Moderate | 14.1 ± 15.9 a | 14.8 ± 33.9 a | 0.1438 | |
High | 14.5 ± 14.3 a | 14.8 ± 13.2 a | 0.6827 | |
p-value ** | 0.7405 | 0.5028 | ||
Folate (ng/mL) | Low | 24.2 ± 10.9 a | 24.4 ± 11.4 a | 0.7685 |
Moderate | 24.2 ± 10.7 a | 24.6 ± 10.9 a | 0.0929 | |
High | 24.1 ± 11.0 a | 24.5 ± 11.0 a | 0.5060 | |
p-value ** | 0.9530 | 0.9052 | ||
Vitamin B12 (pg/mL) | Low | 312.0 ± 145.9 a | 309.9 ± 158.7 a | 0.7895 |
Moderate | 311.3 ± 158.4 a | 309.8 ± 156.2 a | 0.6241 | |
High | 328.5 ± 159.2 a | 330.4 ± 155.0 b | 0.8254 | |
p-value ** | 0.0566 | 0.0025 | ||
Vitamin D (ng/mL) | Low | 23.6 ± 12.7 a | 23.8 ± 12.5 a | 0.7383 |
Moderate | 23.6 ± 12.5 a | 23.2 ± 12.6 a | 0.1191 | |
High | 22.6 ± 12.4 a | 22.8 ± 11.9 a | 0.6032 | |
p-value ** | 0.2228 | 0.2369 | ||
CRP (mg/L) | Low | 6.0 ± 6.6 a | 5.8 ± 6.9 a | 0.5160 |
Moderate | 5.7 ± 6.2 a | 5.9 ± 7.1 a | 0.1883 | |
High | 5.8 ± 7.5 a | 5.9 ± 7.8 a | 0.8173 | |
p-value ** | 0.6469 | 0.8039 |
Predictor | Hgb Coef | Hgb p-Value | Ferritin Coef | Ferritin p-Value | TIBC Coef | TIBC p-Value | Iron Coef | Iron p-Value |
---|---|---|---|---|---|---|---|---|
Moderate Meat | 0.017 | 0.949 | 10.097 | 0.676 | 3.486 | 0.168 | −1.577 | 0.251 |
High Meat | 0.918 * | 0.017 | 134.685 *** | 0.000 | −1.527 | 0.670 | 0.045 | 0.982 |
Female | −4.646 *** | 0.000 | −5.840 | 0.843 | 4.601 | 0.135 | 0.319 | 0.849 |
Moderate × Female | 0.162 | 0.645 | 12.678 | 0.687 | −4.118 | 0.210 | −0.246 | 0.890 |
High × Female | −0.806 | 0.104 | 86.533 | 0.051 | −4.762 | 0.303 | −0.437 | 0.862 |
Age | −0.014 ** | 0.007 | 0.809 | 0.084 | 0.025 | 0.617 | −0.008 | 0.760 |
Moderate × Age | 0.000 | 0.998 | −0.144 | 0.772 | −0.070 | 0.180 | 0.040 | 0.156 |
High × Age | −0.019 * | 0.015 | 0.249 | 0.725 | −0.026 | 0.724 | 0.035 | 0.381 |
Female × Age | 0.048 *** | 0.000 | 0.235 | 0.695 | −0.077 | 0.221 | −0.003 | 0.919 |
Moderate × Female × Age | −0.003 | 0.641 | −0.312 | 0.626 | 0.074 | 0.270 | 0.001 | 0.980 |
High × Female × Age | 0.016 | 0.112 | −1.957 * | 0.031 | 0.084 | 0.371 | 0.011 | 0.833 |
Iron Supplementation | −0.456 *** | 0.000 | 1.231 | 0.692 | −0.418 | 0.198 | 0.082 | 0.642 |
Calcium Supplementation | 0.135 ** | 0.002 | −12.366 ** | 0.002 | 0.624 | 0.133 | −0.61 ** | 0.007 |
Vitamin C Supplementation | 0.146 *** | 0.001 | 23.354 *** | 0.000 | −2.11 *** | 0.000 | 0.90 *** | 0.000 |
Folic Acid | 0.040 | 0.545 | 2.120 | 0.720 | −0.041 | 0.947 | 0.644 | 0.055 |
Diabetes | −0.158 *** | 0.000 | −3.180 | 0.198 | 0.284 | 0.270 | −0.088 | 0.532 |
High Cholesterol | 0.112 *** | 0.000 | −7.168 *** | 0.001 | 0.717 ** | 0.002 | −0.35 ** | 0.005 |
High Blood Pressure | −0.151 *** | 0.000 | −7.612 ** | 0.003 | 0.375 | 0.163 | −0.209 | 0.154 |
Constant | 15.422 *** | 0.000 | 14.921 | 0.518 | 66.95 *** | 0.000 | 14.35 *** | 0.000 |
Observations | 13,685 | 13,680 | 13,694 | 13,690 | ||||
R-squared | 0.487 | 0.128 | 0.011 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousa, H.; Abdel Razeq, N.M.; Khial, Y.; Tayyem, R. Red Meat Consumption, Iron Status, and Cardiometabolic Risk in Qatari Adults: A Cross-Sectional Gender-Stratified Analysis from the QPHI-QBB Data in Qatar. Foods 2025, 14, 2134. https://doi.org/10.3390/foods14122134
Mousa H, Abdel Razeq NM, Khial Y, Tayyem R. Red Meat Consumption, Iron Status, and Cardiometabolic Risk in Qatari Adults: A Cross-Sectional Gender-Stratified Analysis from the QPHI-QBB Data in Qatar. Foods. 2025; 14(12):2134. https://doi.org/10.3390/foods14122134
Chicago/Turabian StyleMousa, Hanaa, Nadin M. Abdel Razeq, Yasmen Khial, and Reema Tayyem. 2025. "Red Meat Consumption, Iron Status, and Cardiometabolic Risk in Qatari Adults: A Cross-Sectional Gender-Stratified Analysis from the QPHI-QBB Data in Qatar" Foods 14, no. 12: 2134. https://doi.org/10.3390/foods14122134
APA StyleMousa, H., Abdel Razeq, N. M., Khial, Y., & Tayyem, R. (2025). Red Meat Consumption, Iron Status, and Cardiometabolic Risk in Qatari Adults: A Cross-Sectional Gender-Stratified Analysis from the QPHI-QBB Data in Qatar. Foods, 14(12), 2134. https://doi.org/10.3390/foods14122134