Permeabilization of Cryptosporidium spp. Oocysts in Water, Apple and Carrot Juice by Pulsed Electric Field Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Purification of Cryptosporidium Oocysts
2.2. PEF Treatment
2.3. Assessment of Thermal Effects on Oocyst Membrane Permeabilization in the Absence of PEF
2.4. Assessment of Cryptosporidium Oocyst Viability
2.4.1. Microscopy
2.4.2. Flow Cytometry
2.5. Fruit Juices
2.6. Experimental Design
2.7. Statistical Analysis
3. Results and Discussion
3.1. Influence of the Electric Parameters on Cryptosporidium Oocysts Permeabilization to PI
3.1.1. Effect of Electric Field Strength and Treatment Time
3.1.2. Regression Modeling and Statistical Significance
3.1.3. Interpretation of the Model and Response Surface Visualization
3.2. Influence of the PEF Treatment Temperature on the Cryptosporidium Oocysts Permeabilization to PI
3.2.1. Evaluation of Thermal Resistance of Oocysts in the Absence of PEF
3.2.2. Synergistic Effect of Temperature and PEF
3.2.3. Technological Implications of Thermally-Assisted PEF Treatments
3.3. Validation of PEF Treatments Applied at Different Temperatures for the Inactivation of Cryptosporidium Oocysts in Carrot Juice and Apple Juice
3.3.1. Effect of PEF Temperature on Oocysts Permeabilization in Juices
3.3.2. Influence of Matrix Properties on PEF Efficacy
3.3.3. Industrial Feasibility, Regulatory Considerations and Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zahedi, A.; Ryan, U. Cryptosporidium–An Update with an Emphasis on Foodborne and Waterborne Transmission. Res. Vet. Sci. 2020, 132, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Razakandrainibe, R.; Valot, S.; Vannier, M.; Sautour, M.; Basmaciyan, L.; Gargala, G.; Viller, V.; Lemeteil, D.; Ballet, J.J.; et al. Epidemiology of Cryptosporidiosis in France from 2017 to 2019. Microorganisms 2020, 8, 1358. [Google Scholar] [CrossRef]
- De Felice, L.A.; Basset, C.; Unzaga, J.M. Chapter 13: Cryptosporidium spp. In Protozoos Parásitos de Importancia Sanitaria: Un Abordaje Transdisciplinar; Editorial de la Universidad Nacional de La Plata (EDULP): Plata, Argentina, 2023. [Google Scholar] [CrossRef]
- Garcia-R, J.C.; Hayman, D.T.S. A Review and Analysis of Cryptosporidiosis Outbreaks in New Zealand. Parasitology 2023, 150, 606–611. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). Cryptosporidiosis–Annual Epidemiological Report 2021; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2024. [Google Scholar]
- Augendre, L.; Costa, D.; Escotte-Binet, S.; Aubert, D.; Villena, I.; Dumètre, A.; La Carbona, S. Surrogates of Foodborne and Waterborne Protozoan Parasites: A Review. Food Waterborne Parasitol. 2023, 33, e00212. [Google Scholar] [CrossRef]
- Nasser, A.M. Removal of Cryptosporidium by Wastewater Treatment Processes: A Review. J. Water Health 2016, 14, 1–13. [Google Scholar] [CrossRef]
- Adeyemo, F.E.; Singh, G.; Reddy, P.; Bux, F.; Stenström, T.A. Efficiency of Chlorine and UV in the Inactivation of Cryptosporidium and Giardia in Wastewater. PLoS ONE 2019, 14, e0216040. [Google Scholar] [CrossRef] [PubMed]
- Korich, D.G.; Mead, J.R.; Madore, M.S.; Sinclair, N.A.; Sterling, C.R. Effects of Ozone, Chlorine Dioxide, Chlorine, and Monochloramine on Cryptosporidium Parvum Oocyst Viability. Appl. Environ. Microbiol. 1990, 56, 1423–1428. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T.; Syafrudin, M.; Yılmaz, M.; Abdullah, S. Microbiological Contaminants in Drinking Water: Current Status and Challenges. Water Air Soil Pollut. 2022, 233, 299. [Google Scholar] [CrossRef]
- Kunz, J.M.; Lawinger, H.; Miko, S.; Gerdes, M.; Thuneibat, M.; Hannapel, E.; Roberts, V.A. Surveillance of Waterborne Disease Outbreaks Associated with Drinking Water-United States, 2015–2020. Morb. Mortal. Wkly. Rep. 2024, 73, 1–23. [Google Scholar] [CrossRef]
- Duffy, G.; Moriarty, E.M. Cryptosporidium and Its Potential as a Food-Borne Pathogen. Anim. Health Res. Rev. 2003, 4, 95–107. [Google Scholar] [CrossRef]
- Donnelly, J.K.; Stentiford, E.I. The Cryptosporidium Problem in Water and Food Supplies. LWT-Food Sci. Technol. 1997, 30, 111–120. [Google Scholar] [CrossRef]
- Ethelberg, S.; Lisby, M.; Vestergaard, L.S.; Enemark, H.I.; Olsen, K.E.P.; Stensvold, C.R.; Nielsen, H.V.; Porsbo, L.J.; Plesner, A.A.M.; Mølbak, K. A Foodborne Outbreak of Cryptosporidium Hominis Infection. Epidemiol. Infect. 2009, 137, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.J.; Temesgen, T.T.; Tysnes, K.R.; Eikås, J.E. An Apple a Day: An Outbreak of Cryptosporidiosis in Norway Associated with Self-Pressed Apple Juice. Epidemiol. Infect. 2019, 147, e139. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Ji, Y.; Xu, C.; Hina, Q.; Javed, U.; Li, K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals 2024, 14, 3287. [Google Scholar] [CrossRef]
- Gharpure, R.; Perez, A.; Miller, A.D.; Wikswo, M.E.; Silver, R.; Hlavsa, M.C. Cryptosporidiosis Outbreaks-United States, 2009–2017. Morb. Mortal. Wkly. Rep. 2019, 68, 568–572. [Google Scholar] [CrossRef]
- Deng, M.Q.; Cliver, D.O. Inactivation of Cryptosporidium parvum Oocysts in Cider by Flash Pasteurization. J. Food Prot. 2001, 64, 523–527. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Hanes, D.E.; Worobo, R.W.; Orlandi, P.A.; Burr, D.H.; Miliotis, M.D.; Robl, M.G.; Bier, J.W.; Arrowood, M.J.; Churey, J.J.; Jackson, G.J. Inactivation of Cryptosporidium parvum Oocysts in Fresh Apple Cider by UV Irradiation. Appl. Environ. Microbiol. 2002, 68, 4168–4172. [Google Scholar] [CrossRef]
- Kniel, K.E. Evaluation of Chemical Treatments and Ozone on the Viability of Cryptosporidium parvum Oocysts in Fruit Juices. Ph.D. Dissertation, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2002. [Google Scholar]
- Kniel, K.E.; Sumner, S.S.; Lindsay, D.S.; Hackney, C.R.; Pierson, M.D.; Zajac, A.M.; Golden, D.A.; Fayer, R. Effect of Organic Acids and Hydrogen Peroxide on Cryptosporidium parvum Viability in Fruit Juices. J. Food Prot. 2003, 66, 1650–1657. [Google Scholar] [CrossRef]
- Craighead, S.; Huang, R.; Chen, H.; Kniel, K.E. The Use of Pulsed Light to Inactivate Cryptosporidium parvum Oocysts on High-Risk Commodities (Cilantro, Mesclun Lettuce, Spinach, and Tomatoes). Food Control 2021, 126, 107965. [Google Scholar] [CrossRef]
- Slifko, T.R.; Raghubeer, E.; Rose, J.B. Effect of High Hydrostatic Pressure on Cryptosporidium parvum Infectivity. J. Food Prot. 2000, 63, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Kotnik, T.; Kramar, P.; Pucihar, G.; Miklavčič, D.; Tarek, M. Cell Membrane Electroporation-Part 1: The Phenomenon. IEEE Electr. Insul. Mag. 2012, 28, 14–23. [Google Scholar] [CrossRef]
- Martínez, J.M.; Abad, V.; Quílez, J.; Reina, D.; Pérez-Martin, J.E.; Raso, J.; Cebrián, G.; Álvarez-Lanzarote, I. Inactivation of Trichinella Spp. in Naturally Infected Boar Meat after Pulsed Electric Field (PEF) Treatments. Food Control 2024, 163, 110482. [Google Scholar] [CrossRef]
- Delso, C.; Martínez, J.M.; Cebrián, G.; Condón, S.; Raso, J.; Álvarez, I. Microbial Inactivation by Pulsed Electric Fields. In Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications; Raso, J., Heinz, V., Alvarez, I., Toepfl, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 169–207. ISBN 978-3-030-70586-2. [Google Scholar]
- Abad, V.; Alejandre, M.; Hernández-Fernández, E.; Raso, J.; Cebrián, G.; Álvarez-Lanzarote, I. Evaluation of Pulsed Electric Fields (PEF) Parameters in the Inactivation of Anisakis Larvae in Saline Solution and Hake Meat. Foods 2023, 12, 264. [Google Scholar] [CrossRef]
- Haas, C.N.; Aturaliye, D. Semi-Quantitative Characterization of Electroporation-Assisted Disinfection Processes for Inactivation of Giardia and Cryptosporidium. J. Appl. Microbiol. 1999, 86, 899–905. [Google Scholar] [CrossRef]
- Heinz, V.; Phillips, S.T.; Zenker, M.; Knorr, D. Inactivation of Bacillus Subtilis by High Intensity Pulsed Electric Fields under Close to Isothermal Conditions. Food Biotechnol. 1999, 13, 155–168. [Google Scholar] [CrossRef]
- Saldaña, G.; Puértolas, E.; Álvarez, I.; Meneses, N.; Knorr, D.; Raso, J. Evaluation of a Static Treatment Chamber to Investigate Kinetics of Microbial Inactivation by Pulsed Electric Fields at Different Temperatures at Quasi-Isothermal Conditions. J. Food Eng. 2010, 100, 349–356. [Google Scholar] [CrossRef]
- Bukhari, Z.; Glen, W.G.; Clancy, J.L. Effects of pH on a fluorogenic vital dyes assay (4′, 6′-diamidino-2-phenyl-indole and propidium iodide) for Cryptosporidium sp. oocysts. Water Res. 1999, 33, 3037–3039. [Google Scholar] [CrossRef]
- Weaver, J.C.; Chizmadzhev, Y.A. Theory of Electroporation: A Review. Bioelectrochem. Bioenerg. 1996, 41, 135–160. [Google Scholar] [CrossRef]
- Campbell, A.T.; Robertson, L.J.; Smith, H.V. Viability of Cryptosporidium Parvum Oocysts: Correlation of In Vitro Excystation with Inclusion or Exclusion of Fluorogenic Vital Dyes. Appl. Environ. Microbiol. 1992, 58, 3488–3493. [Google Scholar] [CrossRef]
- Jenkins, M.B.; Anguish, L.J.; Bowman, D.D.; Walker, M.J.; Ghiorse, W.C. Assessment of a Dye Permeability Assay for Determination of Inactivation Rates of Cryptosporidium parvum Oocysts. Appl. Environ. Microbiol. 1997, 63, 3844–3850. [Google Scholar] [CrossRef] [PubMed]
- Vande Burgt, N.H.; Auer, A.; Zintl, A. Comparison of in Vitro Viability Methods for Cryptosporidium Oocysts. Exp. Parasitol. 2018, 187, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Tomonaga, T.; Kumar Rai, S.; Uga, S. Differentiation between Viable and Dead Cryptosporidium Oocysts Using Fluorochrome Staining. Kobe J. Med. Sci. 2015, 61, E138–E143. [Google Scholar]
- Fayer, R. Effect of High Temperature on Infectivity of Cryptosporidium parvum Oocysts in Water. Appl. Environ. Microbiol. 1994, 60, 2732–2735. [Google Scholar] [CrossRef]
- Temesgen, T.T.; Tysnes, K.R.; Robertson, L.J. Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts. Microorganisms 2021, 9, 1463. [Google Scholar] [CrossRef]
- Montanari, C.; Tylewicz, U.; Tabanelli, G.; Berardinelli, A.; Rocculi, P.; Ragni, L.; Gardini, F. Heat-Assisted Pulsed Electric Field Treatment for the Inactivation of Saccharomyces Cerevisiae: Effects of the Presence of Citral. Front. Microbiol. 2019, 10, 1737. [Google Scholar] [CrossRef]
- Yan, Z.; Yin, L.; Hao, C.; Liu, K.; Qiu, J. Synergistic Effect of Pulsed Electric Fields and Temperature on the Inactivation of Microorganisms. AMB Express 2021, 11, 47. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Munakata, N.; Horneck, G.; Melosh, H.J.; Setlow, P. Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. [Google Scholar] [CrossRef] [PubMed]
- Bushkin, G.G.; Motari, E.; Carpentieri, A.; Dubey, J.P.; Costello, C.E.; Robbins, P.W.; Samuelson, J. Evidence for a Structural Role for Acid-Fast Lipids in Oocyst Walls of Cryptosporidium, Toxoplasma, and Eimeria. mBio 2013, 4, e00387-13. [Google Scholar] [CrossRef]
- Clancy, J.L.; Bukhari, Z.; Hargy, T.M.; Bolton, J.R.; Dussert, B.W.; Marshall, M.M. Using UV to Inactivate Cryptosporidium. J. Am. Water Works Assoc. 2000, 92, 97–104. [Google Scholar] [CrossRef]
- Craik, S.A.; Weldon, D.; Finch, G.R.; Bolton, J.R.; Belosevic, M. Inactivation of Cryptosporidium parvum oocysts using medium-and low-pressure ultraviolet radiation. Water Res. 2001, 35, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Matsubayashi, M.; Teramoto, I.; Urakami, I.; Naohara, J.; Sasai, K.; Kido, Y.; Kaneko, A. Evaluation of Cryptosporidium parvum Oocyst Inactivation Following Exposure to Ultraviolet Light-Emitting Diodes by in Vitro Excystation and Dye Staining Assays. Parasitol. Int. 2022, 88, 102557. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.V.; Flick, G.J.; Smith, S.A.; Fayer, R.; Croonenberghs, R.; O’keefe, S.; Lindsay, D.S. The Effect of High-Pressure Processing on Infectivity of Cryptosporidium parvum Oocysts Recovered from Experimentally Exposed Eastern Oysters (Crassostrea virginica). J. Eukaryot. Microbiol. 2005, 52, 500–504. [Google Scholar] [CrossRef]
- Huffman, D.E.; Slifko, T.R.; Salisbury, K.; Rose, J.B. Inactivation of bacteria, virus and Cryptosporidium by a point-of-use device using pulsed broad spectrum white light. Water Res. 1999, 34, 2491–2498. [Google Scholar] [CrossRef]
- Craighead, S.; Hertrich, S.; Boyd, G.; Sites, J.; Niemira, B.A.; Kniel, K.E. Cold Atmospheric Plasma Jet Inactivates Cryptosporidium parvum Oocysts on Cilantro. J. Food Prot. 2020, 83, 794–800. [Google Scholar] [CrossRef]
- Olvera, M.; Eguía, A.; Rodríguez, O.; Chong, E.; Pillai, S.D.; Ilangovan, K. Inactivation of Cryptosporidium parvum Oocysts in Water Using Ultrasonic Treatment. Bioresour. Technol. 2008, 99, 2046–2049. [Google Scholar] [CrossRef] [PubMed]
- Oyane, I.; Furuta, M.; Stavarache, C.E.; Hashiba, K.; Mukai, S.; Nakanishi, M.; Kimata, I.; Maeda, Y. Inactivation of Cryptosporidium parvum by Ultrasonic Irradiation. Environ. Sci. Technol. 2005, 39, 7294–7298. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention Outbreaks of Escherichia Coli O157:H7 Infection and Cryptosporidiosis Associated With Drinking Unpasteurized Apple Cider—Connecticut and New York, October 1996. JAMA 1997, 277, 781–782. [CrossRef]
- Robertson, L.J.; Gjerde, B. Occurrence of Parasites on Fruits and Vegetables in Norway. J. Food Prot. 2001, 64, 1793–1798. [Google Scholar] [CrossRef]
- Grand View Research. Cold Press Juice Market Size, Share & Trends Analysis Report by Type (Fruit, Vegetable), by Category (Conventional, Organic), by Packaging, by Distribution Channel, by Region, and Segment Forecasts, 2024–2030; Grand View Research: San Francisco, CA, USA, 2024. [Google Scholar]
- Heinz, V.; Toepfl, S.; Knorr, D. Impact of Temperature on Lethality and Energy Efficiency of Apple Juice Pasteurization by Pulsed Electric Fields Treatment. Innov. Food Sci. Emerg. Technol. 2003, 4, 167–175. [Google Scholar] [CrossRef]
- Toepfl, S.; Mathys, A.; Heinz, V.; Knorr, D. Review: Potential of High Hydrostatic Pressure and Pulsed Electric Fields for Energy Efficient and Environmentally Friendly Food Processing. Food Rev. Int. 2006, 22, 405–423. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, H.; Hermawan, N.; Dantzer, W. Effects of PH and Temperature on Inactivation of Salmonella Typhimurium DT104 in Liquid Whole Egg by Pulsed Electric Fields. Int. J. Food Sci. Technol. 2009, 44, 367–372. [Google Scholar] [CrossRef]
- Li, L.; Yang, R.; Zhao, W. The Effect of Pulsed Electric Fields (PEF) Combined with Temperature and Natural Preservatives on the Quality and Microbiological Shelf-Life of Cantaloupe Juice. Foods 2021, 10, 2606. [Google Scholar] [CrossRef]
- Petersen, H.H.; Dalsgaard, A.; Vinneras, B.; Jensen, L.S.; Le, T.T.A.; Petersen, M.A.; Enemark, H.L.; Forslund, A. Inactivation of Cryptosporidium parvum Oocysts and Faecal Indicator Bacteria in Cattle Slurry by Addition of Ammonia. J. Appl. Microbiol. 2021, 130, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, L.; Cheftel, J.C. Food Processing by Pulsed Electric Fields. II. Biological Aspects. Food Rev. Int. 1999, 15, 181–213. [Google Scholar] [CrossRef]
- Charles-Rodríguez, A.V.; Nevárez-Moorillón, G.V.; Zhang, Q.H.; Ortega-Rivas, E. Comparison of Thermal Processing and Pulsed Electric Fields Treatment in Pasteurization of Apple Juice. Food Bioprod. Process. 2007, 85, 93–97. [Google Scholar] [CrossRef]
- Food and Drug Administratio. Guidance for Industry: Juice Hazard Critical Control Point Hazards and Controls Guidance, 1st ed.; Food and Drug Administratio: Silver Spring, MD, USA, 2004. [Google Scholar]
- Robertson, L.J.; Chalmers, R.M. Foodborne Cryptosporidiosis: Is There Really More in Nordic Countries? Trends Parasitol. 2013, 29, 3–9. [Google Scholar] [CrossRef]
Property | Carrot Juice | Apple Juice |
---|---|---|
pH | 5.94 ± 0.01 | 3.40 ± 0.01 |
°Brix | 6.35 ± 0.05 | 11.9 ± 0.1 |
Conductivity | 4.3 ± 0.01 | 1.64 ± 0.01 |
Sum of Squares | df | Mean Square | F-Value | p Value | |
---|---|---|---|---|---|
Model | 40,577.82 | 4 | 10,144.46 | 101.82 | <0.0001 |
A-Electric Field Strength | 30,333.77 | 1 | 30,333.77 | 304.45 | <0.0001 |
B-Treatment time | 1677.53 | 1 | 1677.53 | 16.84 | 0.0002 |
AB | 428.60 | 1 | 428.60 | 4.30 | 0.0437 |
A2 | 3949.28 | 1 | 3949.28 | 39.64 | <0.0001 |
Residual | 4583.20 | 46 | 99.63 | ||
Lack of Fit | 553.70 | 7 | 79.10 | 0.7656 | 0.6193 |
Pure Error | 4029.50 | 39 | 103.32 |
Fit Statistics | |
---|---|
R2 | 0.8985 |
Adjusted R2 | 0.8897 |
Predicted R2 | 0.8767 |
Adeq Precision | 27.0390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berzosa, A.; Garza-Moreno, L.; Quílez, J.; Raso, J.; Álvarez-Lanzarote, I.; Martínez, J.M. Permeabilization of Cryptosporidium spp. Oocysts in Water, Apple and Carrot Juice by Pulsed Electric Field Technology. Foods 2025, 14, 2112. https://doi.org/10.3390/foods14122112
Berzosa A, Garza-Moreno L, Quílez J, Raso J, Álvarez-Lanzarote I, Martínez JM. Permeabilization of Cryptosporidium spp. Oocysts in Water, Apple and Carrot Juice by Pulsed Electric Field Technology. Foods. 2025; 14(12):2112. https://doi.org/10.3390/foods14122112
Chicago/Turabian StyleBerzosa, Alejandro, Laura Garza-Moreno, Joaquín Quílez, Javier Raso, Ignacio Álvarez-Lanzarote, and Juan Manuel Martínez. 2025. "Permeabilization of Cryptosporidium spp. Oocysts in Water, Apple and Carrot Juice by Pulsed Electric Field Technology" Foods 14, no. 12: 2112. https://doi.org/10.3390/foods14122112
APA StyleBerzosa, A., Garza-Moreno, L., Quílez, J., Raso, J., Álvarez-Lanzarote, I., & Martínez, J. M. (2025). Permeabilization of Cryptosporidium spp. Oocysts in Water, Apple and Carrot Juice by Pulsed Electric Field Technology. Foods, 14(12), 2112. https://doi.org/10.3390/foods14122112