Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives
Abstract
1. Introduction
2. Nutritional and Health Benefits
2.1. Prevention and Control of CVD
2.2. Obesity Prevention with DF-Rich Meals
2.3. Diabetes Control: The Impact of a Diet High in DFs
2.4. Cancer Prevention with Diets Rich in DFs
2.5. Antioxidative Activity
2.6. Role in Reducing Fat and Caloric Content
2.7. Prebiotic Effects and Gut Health Benefits
2.8. Potential Reduction of Process-Induced Toxicants
3. Types and Sources of Dietary Fibres Used in Meat Processing
3.1. Cereal and Grain-Based Fibres
3.2. Legume-Derived Fibres
3.3. Fruit and Vegetable Fibres
3.4. Seaweed and Microbial-Derived Fibres
4. Functional Roles of Fibres in Meat and Plant-Based Meat Products
Dietary Fibre | Functional Role | Potential Health Benefits | Product Type | Concentration Range (w/w) | References |
---|---|---|---|---|---|
Oat β-glucan | Improves emulsion stability, reduces fat absorption, enhances texture, and increases water retention. | Lowers cholesterol levels, improves satiety, and supports gut health. | Low-fat sausages, burgers | 1–5% | [80,89] |
Pea fibre | Enhances fibrous texture, improves structural integrity, and increases WHC. | Promotes gut health, increases SCFA production, and supports weight management. | Plant-based meat analogues | 2–10% | [9,83] |
Wheat fibre | Improves WHC, reduces cooking loss, and enhances texture. | Supports digestive health, reduces caloric density, and improves satiety. | Sausages, meatballs | 1–7% | [99] |
Citrus fibre | Decreases residual nitrite levels and favours micrococcus growth. | Decreases the risk of nitrosamine formation | Fermented sausages | 1–2% | [79] |
Apple fibre | Improves texture, increases yield, and enhances water retention. | Increases DFs intake, supports gut health, and provides antioxidant benefits. | Low-fat sausages, burgers | 1–5% | [91] |
Carrageenan (seaweed) | Enhances water retention, reduces fat separation, and stabilises emulsions. | Supports gut health, improves texture, and provides antioxidant properties. | Processed meats (e.g., ham) | 0.1–1% | [1] |
Resistant starch | Acts as a bulking agent, reduces caloric density, and improves texture. | Promotes gut health, increases SCFA production, and supports weight management. | Low-fat meat products | 2–8% | [82] |
Rice bran fibre | Improves water retention, enhances texture, and provides antioxidant properties. | Reduces oxidative stress, supports gut health, and lowers cholesterol levels. | Meat patties, sausages | 1–5% | [3,91] |
Grape pomace fibre | Reduces oxidative stress, improves texture, and enhances water retention. | Provides antioxidant properties, reduces AGEs and PAHs, and supports cardiovascular health. | Meat analogues, sausages | 1–4% | [11,85] |
Potato fibre | Enhances firmness, improves WHC capacity, and increases yield. | Supports gut health, improves satiety, and provides antioxidant properties. | Meat burgers, sausages | 2–6% | [100] |
Four various proportions of buckwheat husk (BH) | Positive effect on water retention during the storage of frankfurter-type sausages; significant effect on the amino acid content. | Good dietary source of essential amino acids, trace elements and phenolic compounds; preserved protein digestibility; significant effect on mineral content. | Frankfurter-type sausages | 0% BH = 0 g, 1% BH = 4 g, 2% BH = 8 g and 3% BH = 12 g | [101] |
Chia (Salvia hispanica L.) mucilage powder | Fat substituent | Substitute saturated fat (SFA); improved technological characteristics and additional healthier claims. | Emulsified meat products | 2.5% and 5.0% (w/w) | [102] |
Oat bran powder | Improving physico-chemical quality | Crude fibre content significantly higher in all treatment groups; ash content increased significantly | Emulsion-type pork sausages | 3.0%, 6.0%, and 9.0% (w/w) | [103] |
Orange fibre, wheat fibre, bamboo fibre, carrot fibre | Quality maintenance during storage | All the fibres could prevent the growth of spoilage bacteria | Emulsion-type chicken sausage | 1.0% (w/w) | [104] |
Orange fibre, wheat fibre, bamboo fibre, carrot fibre | Development of functional meat products | All of the fibres could prevent the progress of oxidation | Mortadella | 1.0% (w/w) | [105] |
Lyophilised vegetables | Phosphate substitutes | Progress towards the “clean-label” concept | Sausage meat | 1.0%, 1.6%, 2.2%, 2.8%, 3.4%, and 4.0% (w/w) | [106] |
Guava and tomato waste powders (peels and seeds) | Enhance and improve shelf-life | Good source of DFs and bioactive compounds | Beef burger | 5.0%, 10.0%, and 15.0% (w/w) | [107] |
Apple pomace (rehydrated, from dried powder) | Enhancing nutritional and antioxidant properties | The improved fibre and phenol content, lower fat and calories | Italian salami | 7.0% and 14.0% (w/w) | [108] |
Inulin, chitosan, carboxymethyl cellulose, pectin, cellulose | Fibre enrichment/fat substitutes | Changes in water distribution caused by heating are a consequence of the enrichment with chitosan. | Comminuted meat products | 2.0% (w/w) | [109] |
Red lentil | Quality enhancement and creation of the low-fat product | Increased the moisture and protein content in beef burger | Beef burger | 5.0% and 10.0% (w/w) | [110] |
4.1. Water-Holding and Fat-Binding Capacity
4.2. Emulsification and Gelling Properties
4.3. Texture and Sensory Enhancement
4.4. Fibres in Fat-Reduced and/or Fat-Improved Meat Products
5. The Importance of the Industrial Production of PBMAs and the Role of DFs in Their Enrichment/Fortification
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verma, A.K.; Banerjee, R. Dietary fiber as functional ingredient in meat products: A novel approach for healthy living—A review. J. Food Sci. Technol. 2010, 47, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.P.; Mishra, J.; Paital, B.; Rath, P.K.; Jena, M.K.; Reddy, B.V.V.; Pati, P.K.; Panda, S.K.; Sahoo, D.K. Properties and physiological effects of dietary fiber-enriched meat products: A review. Front. Nutr. 2023, 10, 1275341. [Google Scholar] [CrossRef] [PubMed]
- Sangnark, A.; Noomhorm, A. Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Chem. 2004, 37, 66–74. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Consumption of red meat and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- FMI. Plant-Based Food Market Insights—Sustainability & Market Expansion 2023 to 2033. Available online: https://www.futuremarketinsights.com/reports/plant-based-food-market#:~:text=The%20global%20plant%2Dbased%20food,12.2%25%20between%202023%20and%202033 (accessed on 1 February 2025).
- Tarté, R. Ingredients in Meat Products: Properties, Functionality and Applications; Springer Science & Business Media: Berlin, Germany, 2009; pp. 1–419. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Akhilesh, K.V. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Tech. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Kurćubić, V.; Stajić, S.; Miletić, N.; Stanišić, N. Healthier Meat Products Are Fashionable—Consumers Love Fashion. Appl. Sci. 2022, 12, 10129. [Google Scholar] [CrossRef]
- Bohrer, B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Pathania, S.; Kaur, N. Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100295. [Google Scholar] [CrossRef]
- Kurćubić, V.S.; Stanišić, N.; Stajić, S.B.; Dmitrić, M.; Živković, S.; Kurćubić, L.V.; Živković, V.; Jakovljević, V.; Mašković, P.Z.; Mašković, J. Valorizing Grape Pomace: A Review of Applications, Nutritional Benefits, and Potential in Functional Food Development. Foods 2024, 13, 4169. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Dekkers, B.L.; Boom, R.M.; van der Goot, A.J. Structuring processes for meat analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar] [CrossRef]
- Tong, L.; Hongyu, L.; Xinyu, Z.; Jiaxing, L.; Wenlong, X.; Qilong, T.; Dongxia, G.; Jun, Z. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry—A review. Food Chem. 2024, 458, 140154. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Pame, K.; Daimary, B.; Borah, S. Utilization of Dietary Fibre in Meat Products as Functional Foods. Int. J. Agric. Environ. Biotechnol. 2022, 15, 147–151. [Google Scholar] [CrossRef]
- Xie, C.; Lee, Z.J.; Ye, S.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Review on Seaweeds and Seaweed-Derived Polysaccharides: Nutrition, Chemistry, Bioactivities, and Applications. Food Rev. Int. 2023, 40, 1312–1347. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Carballo, J.; Cofrades, S. Healthier meat and meat products: Their role as functional foods. Meat Sci. 2001, 59, 5–13. [Google Scholar] [CrossRef]
- Goméz, M.; Moraleja, A.; Oliete, B.; Ruiz, E.; Caballero, P.A. Effect of fibre size on the quality of fibre enriched layer cakes. LWT 2010, 43, 33–38. [Google Scholar] [CrossRef]
- Jiménez, J.P.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M.E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition 2008, 24, 646–653. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Serdula, M.K.; Liu, S. Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr. Atheroscler. Rep. 2003, 5, 492–499. [Google Scholar] [CrossRef]
- Akbaraly, T.N.; Ferrie, J.E.; Berr, C.; Brunner, E.J.; Head, J.; Marmot, M.G.; Singh-Manoux, A.; Ritchie, K.; Shipley, M.J.; Kivimaki, M. Alternative Healthy Eating Index and mortality over 18 y of follow-up: Results from the Whitehall II cohort123. Am. J. Clin. Nutr. 2011, 94, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Baer, H.J.; Glynn, R.J.; Hu, F.B.; Hankinson, S.E.; Willett, W.C.; Colditz, G.A.; Stampfer, M.; Rosner, B. Risk factors for mortality in the nurses’ health study: A competing risks analysis. Am. J. Epidemiol. 2011, 173, 319e29. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gracia, E.; Arós, F.; Diez-Espino, J.; Buil-Cosiales, P.; Lamuela-Raventós, R.M.; Ortega-Calvo, M.; Basterra-Gortari, F.J.; Gonzalez, J.I.; Fitó, M.; Moñino, M.; et al. Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: Results from the PREvención con DIeta MEDiterránea (PREDIMED) trial. Br. J. Nutr. 2016, 116, 534–546. [Google Scholar] [CrossRef]
- van Belle, T.L.; Coppieters, K.T.; von Herrath, M.G. Type 1 diabetes: Etiology, immunology, and therapeutic strategies. Physiol. Rev. 2011, 91, 79–118. [Google Scholar] [CrossRef]
- Llobera, A.; Cañellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Karovičová, J.; Kohajdová, Z.; Minarovičová, L.; Kuchtová, V. The Chemical Composition of Grape Fibre. Potravinarstvo 2015, 9, 53–57. [Google Scholar] [CrossRef]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Hólm, H.; Ding, E.L.; Johnson, T.; et al. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet 2012, 380, 572–580. [Google Scholar] [CrossRef]
- Mann, J. Dietary carbohydrate: Relationship to cardiovascular disease and disorders of carbohydrate metabolism. Eur. J. Clin. Nutr. 2007, 61, S100–S111. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, D.; Liu, Y.; Li, Z.; Wang, J.; Han, Z.; Miao, X.; Liu, X.; Li, X.; Wang, W.; et al. Association of TyG index and TG/HDL-C ratio with arterial stiffness progression in a non-normotensive population. Cardiovasc. Diabetol. 2021, 20, 134. [Google Scholar] [CrossRef]
- Haimsohn, J.S. HDL and LDL. South Med. J. 1979, 72, 899. [Google Scholar] [CrossRef]
- Gul, K.; Singh, A.K.; Jabeen, R. Nutraceuticals and functional foods: The foods for the future world. Crit. Rev. Food. Sci. Nutr. 2016, 56, 2617–2627. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashmi, K.; Al-Zakwani, I.; AlMahmeed, W.; Arafah, M.; Al-Hinai, A.T.; Shehab, A.; Al Tamimi, O.; Al Awadhi, M.; Al Herz, S.; Al Anazi, F.; et al. Non-high-density lipoprotein cholesterol target achievement in patients on lipid lowering drugs and stratified by triglyceride levels in the Arabian Gulf. J. Clin. Lipidol. 2016, 10, 368–377. [Google Scholar] [CrossRef]
- Drzikova, B.; Donowski, G.; Gebhardt, E.; Habel, A. The composition of dietary fiber rich extrudates from oat affects bile acid binding and fermentation in vitro. Food Chem. 2005, 90, 181–192. [Google Scholar] [CrossRef]
- Marlett, J.A.; Hosing, K.B.; Vellendorf, N.W.; Shinnick, F.L.; Hack, V.S.; Story, J.A. Mechanism of serum cholesterol reduction by oat bran. Hepatology 1994, 20, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J.; Buttriss, J.L. Carbohydrates and dietary fiber. Nutr. Bull. 2007, 32, 21–64. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Akerman, A.; Kumar, S.; Pham, H.T.D.; Cofey, S.; Mann, J. Dietary fibre in hypertension and cardiovascular disease management: Systematic review and meta-analyses. BMC Med. 2022, 20, 139. [Google Scholar] [CrossRef]
- Buttriss, J.L.; Stokes, C.S. Dietary fiber and health: An overview. Br. Nutr. Found. Nutr. Bull. 2008, 33, 186–200. [Google Scholar] [CrossRef]
- Del Moral, A.M.; Calvo, C.; Martínez, A. Consumo de alimentos ultra procesados y obesidad: Una revisión sistemática [ultra-processed food consumption and obesity—A systematic review]. Nutr. Hosp. 2021, 38, 177–185. [Google Scholar] [CrossRef]
- Tapsell, L.C. Diet and metabolic syndrome: Where does resistant starch fit in? J. Assoc. Anal. Chem. Int. 2004, 87, 756–760. [Google Scholar] [CrossRef]
- Du, H.; van der A, D.L.; Boshuizen, H.C.; Forouhi, N.G.; Wareham, N.J.; Halkjaer, J.; Tjønneland, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; et al. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am. J. Clin. Nutr. 2010, 91, 329–336. [Google Scholar] [CrossRef]
- Schulze, M.B.; Liu, S.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am. J. Clin. Nutr. 2004, 80, 348–356. [Google Scholar] [CrossRef]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R., Jr.; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 2000, 71, 921–930. [Google Scholar] [CrossRef]
- Wursch, P.; Pi-Sunyer, X. The role of viscous soluble fiber in metabolic control of diabetes. Diabet. Care. 1997, 20, 1774–1780. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Leeds, A.R.; Gassull, M.A.; Haisman, P.; Dilawari, J.; Goff, D.V.; Metz, G.L.; Alberti, K.G. Dietary fibers, fiber analogues, and glucose tolerance: Importance of viscosity. Br. Med. J. 1978, 1, 1392–1394. [Google Scholar] [CrossRef] [PubMed]
- Farha, A.K.; Gan, R.Y.; Li, H.B.; Wu, D.T.; Atanasov, A.G.; Gul, K.; Zhang, J.-R.; Yang, Q.-Q.; Corke, H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit. Rev. Food. Sci. Nutr. 2022, 62, 832–859. [Google Scholar] [CrossRef] [PubMed]
- Antunes-Ricardo, M.; Villela-Castrejón, J.; Gutiérrez-Uribe, J.A.; Serna Saldívar, S.O. Dietary fiber and cancer. In Science and Technology of Fibers in Food Systems. Food Engineering Series; Welti-Chanes, J., Serna-Saldívar, S., Campanella, O., Tejada-Ortigoza, V., Eds.; Springer: Cham, Switzerland, 2020; pp. 241–276. [Google Scholar] [CrossRef]
- Shankar, S.; Lanza, E. Dietary fiber and cancer prevention. Hematol. Oncol. Clin. N. Am. 1991, 5, 25–41. [Google Scholar] [CrossRef]
- McRae, M.P. The benefits of dietary fiber intake on reducing the risk of cancer: An umbrella review of meta-analyses. J. Chiropr. Med. 2018, 17, 90–96. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Zhou, L.; Tang, S. A critical review of the effect of dietary fiber intake on the prevention of colorectal cancer in Eastern Asian Countries. J. Healthc. Eng. 2021, 2021, 6680698. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Li, Y.; Xue, K.; Kan, J. Use of dietary fibers in reducing the risk of several cancer types: An umbrella review. Nutrients 2023, 15, 2545. [Google Scholar] [CrossRef]
- Harris, P.J.; Ferguson, L.R. Dietary fiber: Its composition and role in protection against colorectal cancer. Mutat. Res. 1993, 290, 97–110. [Google Scholar] [CrossRef]
- Rumney, C.; Rowland, I. Nondigestible oligosaccharides-potential anti-cancer agents? Nutr. Bull. 1995, 20, 194–203. [Google Scholar] [CrossRef]
- Sharma, A.; Yadav, B.; Ritika, S. Resistant starch: Physiological roles and food applications. Food Rev. Int. 2008, 24, 193–234. [Google Scholar] [CrossRef]
- Potter, J.D. Colorectal cancer: Molecules and populations. J. Natl. Cancer. Inst. 1999, 91, 916–932. [Google Scholar] [CrossRef]
- Ursachi, C.S.; Perta-Crisan, S.; Munteanu, F.D. Strategies to improve meat products’ quality. Foods 2020, 9, 1883. [Google Scholar] [CrossRef] [PubMed]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P. Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chem. 2010, 122, 260–266. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 2020, 99, 323–336. [Google Scholar] [CrossRef]
- Angulo-López, J.E.; Flores-Gallegos, A.C.; Ascacio-Valdes, J.A.; Contreras Esquivel, J.C.; Torres-León, C.; Rúelas-Chácon, X.; Aguilar, C.N. Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods 2023, 12, 159. [Google Scholar] [CrossRef]
- Wang, Y.; Uffelman, C.N.; Bergia, R.E.; Clark, C.M.; Reed, J.B.; Tzu-Wen, L.; Lindemann, S.R.; Tang, M.; Campbell, W.W. Meat consumption and gut microbiota: A scoping review of literature and systematic review of randomized controlled trials in adults. Adv. Nutr. 2023, 14, 215–237. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Chegodaev, Y.S.; Wu, W.-K.; Orekhov, A.N. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology 2020, 9, 60. [Google Scholar] [CrossRef]
- Lizarraga, D.; Vinardell, M.P.; Noé, V.; van Delft, J.H.; Alcarraz-Vizań, G.; van Breda, S.G.; Staal, Y.; Günther, U.; Michelle, A.; Reed, M.A.; et al. A Lyophilized Red Grape Pomace Containing Proanthocyanidin-Rich Dietary Fiber Induces Genetic and Metabolic Alterations in Colon Mucosa of Female C57BL/6J Mice. J. Nutr. 2011, 141, 1597–1604. [Google Scholar] [CrossRef]
- de Kok, T.M.; de Waard, P.; Wilms, L.C.; van Breda, S.G. Antioxidative and antigenotoxic properties of vegetables and dietary phytochemicals: The value of genomics biomarkers in molecular epidemiology. Mol. Nutr. Food Res. 2010, 54, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Eskicioglu, V.; Kamiloglu, S.; Nilufer-Erdil, D. Antioxidant dietary fibres: Potential functional food ingredients from plant processing by-products. Czech J. Food Sci. 2015, 33, 487–499. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Kechaou, A.; Makni, I.; Attia, H. Influence of carrageenan addition on turkey meat sausages properties. J. Food Eng. 2009, 93, 278–283. [Google Scholar] [CrossRef]
- Samappito, J.; Nathanon, T. Evaluation of the Acceptability of Instant Fiber Powder from Thai Vegetables Supplemented with Probiotic Bacteria. In International Conference on Bioscience, Biochemistry and Bioinformatics IPCBEE; IACSIT Press: Singapore, 2011; Volume 5, pp. 203–207. [Google Scholar]
- López-Marcos, M.C.; Bailina, C.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. Properties of Dietary Fibers from Agroindustrial Coproducts as Source for Fiber-Enriched Foods. Food Bioprocess Technol. 2015, 8, 2400–2408. [Google Scholar] [CrossRef]
- Quiles, A.; Campbell, G.M.; Struck, S.; Rohm, H.; Hernando, I. Fiber from fruit pomace: A review of applications in cereal-based products. Food Rev. Int. 2016, 34, 162–181. [Google Scholar] [CrossRef]
- Hussain, S.; Jõudu, I.; Bhat, R. Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. Sustainability 2020, 12, 5401. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Sant’ANna, V. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT 2014, 58, 497–501. [Google Scholar] [CrossRef]
- Hạnh, T.T.H.; Phúc, L.N.; Duy, H.H.B.; Xuyến, N.K.; Trà, T.T.T.; Nguyệt, T.N.M.; Mẫn, L.V.V. Effects of cellulolytic treatment conditions on dietary fiber content of grape pomace and use of enzyme-treated pomace in cookie making. IOP Conf. Ser. Earth Environ. Sci. 2021, 947, 012045. [Google Scholar] [CrossRef]
- Martínez-Meza, Y.; Pérez-Jiménez, J.; Rocha-Guzmán, N.E.; Rodríguez-García, M.E.; Alonzo-Macías, M.; Reynoso-Camacho, R. Modification on the polyphenols and dietary fiber content of grape pomace by instant controlled pressure drop. Food Chem. 2021, 360, 130035. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak, R.; Górecka, D. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. J. Sci. Food Agric. 2013, 93, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Subiría-Cueto, C.R.; Muñoz-Bernal, Ó.A.; de la ROSA, L.A.; Wall-Medrano, A.; Rodrigo-García, J.; Martinez-Gonzalez, A.I.; González-Aguilar, G.; Martínez-Ruiz, N.d.R.; Alvarez-Parrilla, E. Adsorption of grape pomace (Vitis vinifera) and pecan shell (Carya illinoensis) phenolic compounds to insoluble dietary fiber. Food Sci. Technol. Camp. 2022, 42, e41422. [Google Scholar] [CrossRef]
- Milinčić, D.; Vidović, B.; Stanojević, S.; Pešić, M. Grape Pomace Seed and Skin Powder as a Source of Dietary Fibre. Proceedings 2023, 91, 375. [Google Scholar] [CrossRef]
- Ito, N.; Fukushima, S.; Tsuda, H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit. Rev. Toxicol. 1985, 15, 109–150. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Sendra, E.; Sayas-Barberá, E.; Navarro, C.; Pérez-Alvarez, J.A. Physico-chemical and microbiological profiles of ‘salchichón’ (Spanish dry-fermented sausage) enriched with orange fiber. Meat Sci. 2008, 80, 410–417. [Google Scholar] [CrossRef]
- Schneeman, B.O. Fiber, inulin and oligofructose: Similarities and differences. J. Nutr. 1999, 129, 1424S–1427S. [Google Scholar] [CrossRef]
- Marczak, A.; Mendes, A.C. Dietary Fibers: Shaping Textural and Functional Properties of Processed Meats and Plant-Based Meat Alternatives. Foods 2024, 13, 1952. [Google Scholar] [CrossRef]
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Aleson-Carbonell, L.; Fernández-López, J.; Pérez-Alvarez, J.A.; Kuri, V. Functional and Sensory Effects of Fibre-rich Ingredients on Breakfast Fresh Sausages Manufacture. Food Sci. Technol. Int. 2005, 11, 89–97. [Google Scholar] [CrossRef]
- Ji, X.; Liu, J.; Liang, J.; Feng, X.; Liu, X.; Wang, Y.; Chen, X.; Qu, G.; Yan, B.; Liu, R. The hidden diet: Synthetic antioxidants in packaged food and their impact on human exposure and health. Environ. Int. 2024, 186, 108613. [Google Scholar] [CrossRef]
- Arun, P.N.; Chittaragi, B.; Prabhu, T.M.; Siddalingamurthy, H.K.; Suma, N.; Gouri, M.D.; Suresh, B.N.; Umashankar, B.C.; Chethan, K.P. Effect of replacing finger millet straw with jackfruit residue silage on growth performance and nutrient utilization in Mandya sheep. Anim. Nutr. Feed. Technol. 2020, 20, 103–109. [Google Scholar] [CrossRef]
- Serdaroglu, M. The characteristics of beef patties containing different levels of fat and oat flour. Int. J. Food Sci. Technol. 2006, 41, 147–153. [Google Scholar] [CrossRef]
- Thebaudin, J.Y.; Lefebvre, A.C.; Harrington, M.; Bourgeois, C.M. Dietary fibres: Nutritional and technological interest. Trends Food Sci. Technol. 1997, 8, 41–48. [Google Scholar] [CrossRef]
- Chudan, S.; Ishibashi, R.; Nishikawa, M.; Tabuchi, Y.; Nagai, Y.; Ikushiro, S.; Furusawa, Y. Effect of Wheat-Derived Arabinoxylan on the Gut Microbiota Composition and Colonic Regulatory T Cells. Molecules 2023, 28, 3079. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Cavender, G.; Zhao, Y. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. J. Food Sci. Technol. 2015, 52, 5568–5578. [Google Scholar] [CrossRef]
- Hughes, E.; Cofrades, S.; Troy, D.J. Effects of fat level, oat fibre and carrageenan on frankfurters formulated with 5, 12 and 30% fat. Meat Sci. 1997, 45, 273–281. [Google Scholar] [CrossRef]
- Chau, C.F.; Huang, Y.L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 2003, 51, 2615–2618. [Google Scholar] [CrossRef] [PubMed]
- García, M.L.; Domínguez, R.; Galvez, M.D.; Casas, C.; Selgas, M.D. Utilization of cereal and fruit fibres in low-fat dry fermented sausages. Meat Sci. 2002, 60, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Carpenter, J.A. Optimizing quality of frankfurters containing oat bran and added water. J. Food Sci. 1997, 62, 194–197. [Google Scholar] [CrossRef]
- Yangilar, F. The application of dietary fibre in food industry: Structural features, effects on health and definition, obtaining and analysis of dietary fibre: A review. J. Food Nutr. Res. 2013, 1, 13–23. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Phillips, G.O.; Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014, 35, 539–545. [Google Scholar] [CrossRef]
- Choe, J.-H.; Kim, H.-Y.; Lee, J.-M.; Kim, Y.-J.; Kim, C.-J. Quality of frankfurter-type sausages with added pig skin and wheat fiber mixture as fat replacers. Meat Sci. 2013, 93, 849–854. [Google Scholar] [CrossRef]
- Stanišić, N.; Mujović, M.; Stajić, S.; Petričević, M.; Radović, Č.; Gogić, M.; Stanojković, A. Techno-Functional Properties of Three Dietary Fibers Used in the Meat Processing Industry. In Proceedings of the 13th International Symposium Modern Trends in Livestock Production, Belgrade, Serbia, 6–8 October 2021; pp. 252–262. [Google Scholar]
- Salejda, A.M.; Olender, K.; Zielińska-Dawidziak, M.; Mazur, M.; Szperlik, J.; Miedzianka, J.; Szmaja, A. Frankfurter-Type Sausage Enriched with Buckwheat By-Product as a Source of Bioactive Compounds. Foods 2022, 11, 674. [Google Scholar] [CrossRef]
- Câmara, A.K.F.I.; Okuro, P.K.; Cunha, R.L.D.; Herrero, A.M.; Ruiz-Capillas, C.; Pollonio, M.A.R. Chia (Salvia hispanica L.) mucilage as a new fat substitute in emulsified meat products: Technological, physicochemical, and rheological characterization. LWT 2020, 125, 109193. [Google Scholar] [CrossRef]
- Jandyal, M.; Malav, O.P.; Mehta, N.; Wagh, R.V. Quality Characteristics of Functional Pork Sausages Incorporated with Oat Bran Powder. J. Meat Sci. 2022, 17, 1–7. [Google Scholar] [CrossRef]
- Aminzare, M.; Hashemi, M.; Afshari, A.; Noori, S.M.A.; Rezaeigolestani, M. Comparative Evaluation of the Effects of Different Dietary Fibers as Natural Additives on the Shelf Life of Cooked Sausages. SSRN 2022, 17, e121624. [Google Scholar] [CrossRef]
- Aminzare, M.; Hashemi, M.; Afshari, A.; Noori, S.M.A.; Rezaeigolestani, M. Development of Functional Sausages: A Comparative Study of the Impact of Four Dietary Fibers on the Physico-Chemical Properties of Mortadella Sausages. J. Hum. Environ. Health Promot. 2024, 10, 83–88. [Google Scholar] [CrossRef]
- Weigel, I.; Nistler, S.; Pichner, R.; Budday, S.; Gensberger-Reigl, S. Dried Vegetables as Potential Clean-Label Phosphate Substitutes in Cooked Sausage Meat. Foods 2023, 12, 1960. [Google Scholar] [CrossRef]
- Ismail, H.; Elsayed, R.; Aly-Aldin, M.; Said, M. Utilization of fruits and vegetables by-products in the manufacture of beef burger. Menoufia J. Food Dairy Sci. 2023, 8, 121–136. [Google Scholar] [CrossRef]
- Grispoldi, L.; Ianni, F.; Blasi, F.; Pollini, L.; Crotti, S.; Cruciani, D.; Cenci-Goga, B.T.; Cossignani, L. Apple Pomace as Valuable Food Ingredient for Enhancing Nutritional and Antioxidant Properties of Italian Salami. Antioxidants 2022, 11, 1221. [Google Scholar] [CrossRef]
- Han, M.; Bertram, H.C. Designing healthier comminuted meat products: Effect of dietary fibers on water distribution and texture of a fat-reduced meat model system. Meat Sci. 2017, 133, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Boisteanu, P.C.; Manoliu, D.R.; Ciobanu, M.M. The Effect of Red Lentil Flour on the Quality Characteristics of Beef Burgers Obtained from Two Different Anatomical Regions. Sci. Pap. Ser. D Anim. Sci. 2023, 66, 385–390. [Google Scholar]
- Montesinos-Herrero, C.; Cottell, D.C.; O’Riordan, E.D.; O’Sullivan, M. Partial replacement of fat by functional fibre in imitation cheese: Effects on rheology and microstructure. Int. Dairy J. 2006, 16, 910–919. [Google Scholar] [CrossRef]
- Fernández-Ginés, J.M.; Fernández-López, J.; Sayas-Barberá, E.; Sendra, E.; Pérez-Alvarez, J.A. Effect of storage conditions on quality characteristics of bologna sausages made with citrus fiber. J. Food Sci. 2003, 68, 710–714. [Google Scholar] [CrossRef]
- Fernández-Ginés, J.M.; Fernández-López, J.; Sayas-Barberá, E.; Sendra, E.; Pérez-Álvarez, J.A. Lemon albedo as a new source of dietary fiber: Application to bologna sausages. Meat Sci. 2004, 67, 7–13. [Google Scholar] [CrossRef]
- Schmiele, M.; Nucci Mascarenhas, M.C.C.; da Silva Barretto, A.C.; Rodrigues Pollonio, M.A. Dietary fiber as fat substitute in emulsified and cooked meat model system. LWT 2015, 61, 105–111. [Google Scholar] [CrossRef]
- Henning, S.S.C.; Tshalibe, P.; Hoffman, L.C. Physico-chemical properties of reduced-fat beef species sausage with pork back fat replaced by pineapple dietary fibres and water. LWT 2016, 74, 92–98. [Google Scholar] [CrossRef]
- Stajić, S.; Stanišić, N.; Tomasevic, I.; Djekic, I.; Ivanović, N.; Živković, D. Use of linseed oil in improving the quality of chicken frankfurters. J. Food Process. Preserv. 2018, 42, e13529. [Google Scholar] [CrossRef]
- Stajić, S.; Tomasevic, I.; Tomovic, V.; Stanišić, N. Dietary fibre as phosphate replacement in all-beef model system emulsions with reduced content of sodium chloride. J. Food Nutr. Res. 2022, 61, 277–285. [Google Scholar]
- Powell, M.J.; Sebranek, J.G.; Prusa, K.J.; Tarté, R. Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork bologna sausage. Meat Sci. 2019, 157, 107883. [Google Scholar] [CrossRef]
- Campagnol, P.C.B.; dos Santos, B.A.; Wagner, R.; Terra, N.N.; Rodrigues Pollonio, M.A. Amorphous cellulose gel as a fat substitute in fermented sausages. Meat Sci. 2012, 90, 36–42. [Google Scholar] [CrossRef]
- Glisic, M.; Baltic, M.; Glisic, M.; Trbovic, D.; Jokanovic, M.; Parunovic, N.; Dimitrijevic, M.; Suvajdzic, B.; Boskovic, M.; Vasilev, D. Inulin-based emulsion-filled gel as a fat replacer in prebiotic- and pufa-enriched dry fermented sausages. Int. J. Food Sci. Technol. 2019, 54, 787–797. [Google Scholar] [CrossRef]
- Kurćubić, V.; Okanović, D.; Vasilev, D.; Ivić, M.; Čolović, D.; Jokanović, M.; Džinić, N. Effects of replacing pork back fat with cellulose fiber in pariser sausages. Fleischwirtschaft 2020, 100, 82–88. [Google Scholar]
- Polizer-Rocha, Y.J.; Lorenzo, J.M.; Pompeu, D.; Rodrigues, I.; Baldin, J.C.; Pires, M.A.; Freire, M.T.A.; Barba, F.J.; Trindade, M.A. Physicochemical and technological properties of beef burger as influenced by the addition of pea fibre. Int. J. Food Sci. Technol. 2020, 55, 1018–1024. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Flores, M. Effect of fat content on aroma generation during processing of dry fermented sausages. Meat Sci. 2011, 87, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Hygreeva, D.; Pandey, M.C.; Radhakrishna, K. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci. 2014, 98, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Olmedilla-Alonso, B.; Jiménez-Colmenero, F.; Sánchez-Muniz, F.J. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 2013, 95, 919–930. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Salvador, A.; Flores, M. Sensory acceptability of slow fermented sausages based on fat content and ripening time. Meat Sci. 2010, 86, 251–257. [Google Scholar] [CrossRef]
- Sebranek, J.G. Basic curing ingredients. In Ingredients in Meat Products: Properties, Functionality and Applications; Tarté, R., Ed.; Springer: New York, NY, USA, 2009; pp. 1–23. [Google Scholar] [CrossRef]
- Magalhães, I.M.C.; Paglarini, C.d.S.; Vidal, V.A.S.; Pollonio, M.A.R. Bamboo fiber improves the functional properties of reduced salt and phosphate-free bologna sausage. J. Food Process. Preserv. 2020, 44, e14929. [Google Scholar] [CrossRef]
- Stajić, S.; Kalušević, A.; Tomasevic, I.; Rabrenović, B.; Božić, A.; Radović, P.; Nedović, V.; Živković, D. Technological properties of model system beef emulsions with encapsulated pumpkin seed oil and shell powder. Pol. J. Food Nutr. Sci. 2020, 70, 159–168. [Google Scholar] [CrossRef]
- Pinton, M.B.; Correa, L.P.; Facchi, M.M.X.; Heck, R.T.; Leães, Y.S.V.; Cichoski, A.J.; Lorenzo, J.M.; dos Santos, M.; Pollonio, M.A.R.; Campagnol, P.C.B. Ultrasound: A new approach to reduce phosphate content of meat emulsions. Meat Sci. 2019, 152, 88–95. [Google Scholar] [CrossRef]
- Vila-Clarà, G.; Vila-Martí, A.; Vergés-Canet, L.; Torres-Moreno, M. Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review. Foods 2024, 13, 1258. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Ahmad, M.; Qureshi, S.; Akbar, M.H.; Siddiqui, S.A.; Gani, A.; Mushtaq, M.; Hassan, I.; Dhull, S.B. Plant-Based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Appl. Food Res. 2022, 2, 100154. [Google Scholar] [CrossRef]
- Liu, W.; Hao, Z.; Florkowski, W.J.; Wu, L.; Yang, Z. A Review of the Challenges Facing Global Commercialization of the Artificial Meat Industry. Foods 2022, 11, 3609. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, N.; Hayat, M.N.; Verma, A.K.; Umaraw, P.; Mehta, N.; Ismail-Fitry, M.R.; Awis Qurni Sazili, A.Q. Meat Analogs: Prospects and Challenges. In Food Analogues: Emerging Methods and Challenges; Can, Ö.P., Göksel Saraç, M., Aslan Türker, D., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Jang, J.; Lee, D.W. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci. Food. 2024, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Elhalis, H.; See, X.Y.; Osen, R.; Chin, X.H.; Chow, Y. The potentials and challenges of using fermentation to improve the sensory quality of plant-based meat analogs. Front. Microbiol. 2023, 14, 1267227. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development (WBCSD). Meat & Dairy Analogues: Opportunities, Challenges and Next Steps. Available online: https://www.wbcsd.org/wp-content/uploads/2023/09/Meat-dairy-analogues_Opportunities_challenges-and-next-steps.pdf (accessed on 2 June 2025).
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef]
- Markets and Markets. Meat Substitutes Market by Source (Soy Protein, Wheat Protein, Pea Protein), Type (Concentrates, Isolates, and Textured), Product (Tofu, Tempeh, Seitan, and Quorn), Form (Solid and Liquid), and Region—Global Forecast to 2027. Available online: https://www.marketsandmarkets.com/Market-Reports/meat-substitutes-market-979.html (accessed on 2 June 2025).
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-Based Food and Protein Trend from a Business Perspective: Markets, Consumers, and the Challenges and Opportunities in the Future. Crit. Rev. Food Sci. Nutr. 2020, 61, 3119–3128. [Google Scholar] [CrossRef] [PubMed]
- Regulation—1924/2006—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2006/1924/oj (accessed on 2 June 2025).
- Ciobanu, M.-M.; Manoliu, D.-R.; Ciobotaru, M.C.; Flocea, E.-I.; Boișteanu, P.-C. Dietary Fibres in Processed Meat: A Review on Nutritional Enhancement, Technological Effects, Sensory Implications and Consumer Perception. Foods 2025, 14, 1459. [Google Scholar] [CrossRef]
- Perez-Santaescolastica, C.; De Winne, A.; Devaere, J.; Fraeye, I. The flavour of edible insects: A comprehensive review on volatile compounds and their analytical assessment. Trends Food Sci. Technol. 2022, 127, 352–367. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M.; Pérez-Alvarez, J.A. Quinoa and chia products as ingredients for healthier processed meat products: Technological strategies for their application and effects on the final product. Curr. Opin. Food Sci. 2021, 40, 26–32. [Google Scholar] [CrossRef]
Meat Product | Fibre/Amounts in Formulation | % of Oil in Formulation * | % Fat Reduction in Product | PUFA/SFA | Reference | |
---|---|---|---|---|---|---|
Fermented sausages | Amorphous cellulose gel/3.75–15% | 0 | 33.9–75.8 | nd | nd | [119] |
Dry-fermented sausage | Inulin gelled suspension/16% | 0 | 29.3 * | 0.34 * | 13.22 | [120] |
Beef emulsion-type sausage | Pineapple dietary fibres/10% | 0 | ≈45 * | nd | nd | [115] |
Pork emulsion-type sausage | Cellulose fibre gel/5–20% | 0 | 22.5–70.2 * | 0.52–0.64 | 21.95–34.26 | [121] |
Emulsion-type model system | Amorphous cellulose fibre/0.2–1.5% | 0 | 11.2–70.8 | nd | nd | [114] |
Beef burger | Pea fibre/1% fibre +6% water | 0 | 18.7 | nd | nd | [122] |
Dry-fermented sausage | Inulin gelled emulsion (linseed oil)/16% | 3.2 * | 20.3 | 0.58 * | 2.23 | [120] |
Emulsion type (chicken frankfurter) | Corn fibre emulsion (linseed oil)/6.25% and 12.5% | 2–4 | 0 | 0.96–1.38 | 0.41–0.67 | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanišić, N.; Kurćubić, V.S.; Stajić, S.B.; Tomasevic, I.D.; Tomasevic, I. Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives. Foods 2025, 14, 2090. https://doi.org/10.3390/foods14122090
Stanišić N, Kurćubić VS, Stajić SB, Tomasevic ID, Tomasevic I. Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives. Foods. 2025; 14(12):2090. https://doi.org/10.3390/foods14122090
Chicago/Turabian StyleStanišić, Nikola, Vladimir S. Kurćubić, Slaviša B. Stajić, Ivana D. Tomasevic, and Igor Tomasevic. 2025. "Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives" Foods 14, no. 12: 2090. https://doi.org/10.3390/foods14122090
APA StyleStanišić, N., Kurćubić, V. S., Stajić, S. B., Tomasevic, I. D., & Tomasevic, I. (2025). Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives. Foods, 14(12), 2090. https://doi.org/10.3390/foods14122090