Application of Antifreeze Substances in Food Cryopreservation
Abstract
1. Introduction
2. Natural Antifreeze Substance
2.1. Mechanisms of Antifreeze Proteins (AFPs)
2.1.1. Thermal Hysteresis Activity (THA)
2.1.2. Ice Recrystallization Inhibition (IRI)
2.1.3. Adsorption Inhibition
2.2. Mechanisms of Antifreeze Peptides (AFPPs)
2.3. Mechanisms of Antifreeze Polysaccharides (AFPLs)
2.4. Mechanisms of Antifreeze Phosphates (AFPSs)
3. Artificial Synthesis Analogs
3.1. Preparation and Application of Synthetic Antifreeze Proteins (SAPAs)
3.1.1. Chemical Methods
3.1.2. Genetic Engineering Expression
3.1.3. Recombinant Expression
3.2. Preparation and Application of Synthetic Antifreeze Peptides (SAPPAs)
4. Application and Limitations of Antifreeze Substances
4.1. Application and Limitations of AFPs
4.2. Application and Limitations of AFPPs
4.3. Application and Limitations of AFPLs
4.4. Application and Limitations of AFPSs
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, X. Gaseous ozone for fresh produce preservation: Recent advances and research needs. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4993–5014. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, L.; Lei, Y.; Shen, H.; Yu, X.; Luo, Y. Differential proteomic analysis to identify proteins associated with quality traits of frozen mud shrimp (Solenocera melantho) using an iTRAQ-based strategy. Food Chem. 2018, 251, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Zhang, M.; Fang, Z.; Sun, J. Direct contact ultrasound assisted freezing of mushroom (Agaricus bisporus): Growth and size distribution of ice crystals. Int. J. Refrig. 2015, 57, 46–53. [Google Scholar] [CrossRef]
- Tan, M.; Ye, J.; Chu, Y.; Xie, J. The effects of ice crystal on water properties and protein stability of large yellow croaker (Pseudosciaena crocea). Int. J. Refrig. 2021, 130, 242–252. [Google Scholar] [CrossRef]
- Kong, C.H.; Hamid, N.; Liu, T.; Sarojini, V. Effect of antifreeze peptide pretreatment on ice crystal size, drip loss, texture, and volatile compounds of frozen carrots. J. Agric. Food Chem. 2016, 64, 4327–4335. [Google Scholar] [CrossRef]
- Walayat, N.; Xiong, H.; Xiong, Z.; Moreno, H.M.; Nawaz, A.; Niaz, N.; Randhawa, M.A. Role of cryoprotectants in surimi and factors affecting surimi gel properties: A review. Food Rev. Int. 2020, 38, 1103–1122. [Google Scholar] [CrossRef]
- Zhang, J.Y. Mechanism of Freezing Denaturation of Silver Carp Protein and Application of Antifreeze Agent. Master’s Thesis, Hefei University of Technology, Hefei, China, 2012. [Google Scholar]
- Laezza, A.; Casillo, A.; Cosconati, S.; Biggs, C.I.; Fabozzi, A.; Paduano, L.; Iadonisi, A.; Novellino, E.; Gibson, M.I.; Randazzo, A.; et al. Decoration of chondroitin polysaccharide with threonine: Synthesis, conformational study, and Ice-recrystallization inhibition activity. Biomacromolecules 2017, 18, 2267–2276. [Google Scholar] [CrossRef]
- Burns, J.A.; Gruber, D.F.; Gaffney, J.P.; Sparks, J.S.; Brugler, M.R. Transcriptomics of a greenlandic snailfish reveals exceptionally high expression of antifreeze protein transcripts. Evol. Bioinform. 2022, 18, 11769343221118347. [Google Scholar] [CrossRef]
- Zhang, S.; Ramaswamy, H.S.; Cao, T.; Hu, L.; Mao, Y.; Zhu, S.; Liu, Y.; Yu, Y. Unveiling the impact of high pressure and low temperature coupling on gelatin gel properties. Food Chem. 2025, 483, 144363. [Google Scholar] [CrossRef]
- Xu, Z.; Cao, S.; Cui, N.; Zhang, R.; Qin, Z.; Liu, H.; Wu, J.; Du, M.; Tan, Z.; Li, T. Screening and characterization of an antifreeze peptide from sea cucumber intestinal protein hydrolysates. Food Chem. 2025, 463, 141194. [Google Scholar] [CrossRef]
- Yukhta, M.; Bespalova, I.; Hubenia, O.; Braslavsky, I.; Chichkov, B.N.; Gryshkov, O. Conjugates of Gold Nanoparticles and Antifreeze Protein III for Cryopreservation of Cells and Tissues. Cryobiology 2025, 119, 105246. [Google Scholar] [CrossRef] [PubMed]
- Hanada, Y.; Nishimiya, Y.; Miura, A.; Tsuda, S.; Kondo, H. Hyperactive antifreeze protein from an antarctic sea ice bacterium Colwellia sp. has a compound Ice-binding site without repetitive sequences. FEBS J. 2014, 281, 3576–3590. [Google Scholar] [CrossRef] [PubMed]
- Pertaya, N.; Marshall, C.B.; Celik, Y.; Davies, P.L.; Braslavsky, I. Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: Basal plane affinity confers hyperactivity. Biophys. J. 2005, 95, 333–341. [Google Scholar] [CrossRef]
- Scotter, A.J.; Marshall, C.B.; Graham, L.A.; Gilbert, J.A.; Garnham, C.P.; Davies, P.L. The basis for hyperactivity of antifreeze proteins. Cryobiology 2006, 53, 229–239. [Google Scholar] [CrossRef]
- Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol-Cell. Physiol. 1984, 247, C125–C142. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, L.; Liu, J. Random irreversible adsorption model of antifreeze glycoprotein binding on ice crystal surface. J. Inn. Mong. Univ. (Nat. Sci. Ed.) 2021, 52, 593–600. [Google Scholar] [CrossRef]
- Tan, M.; Han, M.; Zhou, Y.; Chen, Z.; Cao, W. Trash to treasure: Potential antifreeze peptide from litopenaeus vannamei head via ultrasound-assisted autolysis. Food Chem. X 2025, 27, 102395. [Google Scholar] [CrossRef]
- Wang, S.; Agyare, K.; Damodaran, S. Optimisation of hydrolysis conditions and fractionation of peptide cryoprotectants from gelatin hydrolysate. Food Chem. 2009, 115, 620–630. [Google Scholar] [CrossRef]
- Dang, M.; Xu, Y.; Ding, S.; Wang, P.; Zhang, X.; Li, C.; Sui, J. Study on the reduction of cherry frost damage by pretreating fish scale with antifreeze polypeptide. Food Sci. Technol. 2021, 46, 36–41. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Y.; Nie, W.; Xie, Y.; Chen, B.; Xu, B. Antifreeze protective effect of pig skin gelatin peptide on muscle. Food Res. Dev. 2022, 43, 1. [Google Scholar] [CrossRef]
- Cornwell, A.S. Theoretical aspects of hydrocolloids in controlling crystal structure in foods. Physical foundation and hydrocolloids. Adv. Chem. Ser. Am. Soc. 1960, 25, 59–70. [Google Scholar]
- Damodaran, S.; Wang, S. Ice crystal growth inhibition by peptides from fish gelatin hydrolysate. Food Hydrocoll. 2017, 70, 46–56. [Google Scholar] [CrossRef]
- Du, L.; Betti, M. Chicken collagen hydrolysate cryoprotection of natural actomyosin: Mechanism studies during freeze-thaw cycles and simulated digestion. Food Chem. 2016, 211, 791–802. [Google Scholar] [CrossRef]
- Okazaki, E.; Kimura, I. Frozen surimi and surimi-based products. In Seafood Processing: Technology, Quality and Safety; Wiley: Chichester, UK, 2014; pp. 209–235. [Google Scholar] [CrossRef]
- Pan, L.; Feng, M.; Sun, J.; Chen, X.; Xu, X.; Zhou, G. Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at various pH values. CyTA-J. Food 2016, 14, 547–554. [Google Scholar] [CrossRef]
- Liu, J.; Fang, C.; Luo, Y.; Ding, Y.; Liu, S. Effects of konjac oligo-glucomannan on the physicochemical properties of frozen surimi from red gurnard (Aspitrigla cuculus). Food Hydrocoll. 2019, 89, 668–673. [Google Scholar] [CrossRef]
- Crowe, J.H.; Crowe, L.M.; Carpenter, J.F.; Wistrom, C.A. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 1987, 242, 1. [Google Scholar] [CrossRef]
- Ni, G.P.; Zhao, Q.C.; Li, Z.B.; Li, J.W.; Wang, G.B. Effect of phosphates on weight gain, thawingloss and cooking yield of frozen pollock (Gadus morhua) fillets. Adv. Mater. Res. 2013, 27, 87–91. [Google Scholar] [CrossRef]
- Wang, N.; Li, L.; Li, M.; Qi, W.; Shang, H. Effects of trehalose, sorbitol and sodium citrate on anti-freezing degeneration of myogenic protein in Rhubarb. Food Ind. Sci. Technol. 2017, 38, 232–236. [Google Scholar] [CrossRef]
- Murthy, L.N.; Phadke, G.G.; Siddaiah, V.; Boraiah, R.K. Rheological properties of washed and unwashed tilapia (Oreochromis mossambicus) fish meat: Effect of sucrose and sorbitol. Food Sci. Biotechnol. 2017, 26, 1177–1183. [Google Scholar] [CrossRef]
- Li, Z.; Shi, L.; Ren, Z.; Weng, W. Effect of phosphates in composite antifreeze agents on the freezing resistance of sparus latus. Sci. Technol. Food Ind. 2022, 43, 320–326. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Y.; Li, Z.; Shi, L.; Liu, S.; Liu, Z.; Weng, W. Optimization and application of composite phosphates in antifreeze agents for marine fish. Fish Res. 2024, 46, 458–467. [Google Scholar] [CrossRef]
- Silva Oliveira, M.E.; Goncalves, A.A. The effect of different food grade additives on the quality of pacific white shrimp (Litopenaeus vannamei) after two freeze-thaw cycles. LWT 2019, 113, 108301. [Google Scholar] [CrossRef]
- Yang, X.Z.; Zhao, X.Z.; Zhang, H.L.; Li, Y.Q.; Jiang, S.S.; Yan, X.R. Research on the Production Technology of Instant Shellfish Egg Drop Soup. Food Res. Dev. 2014, 35, 54–57. [Google Scholar] [CrossRef]
- Yang, F.; Wang, D.; Wang, F.; Liu, M.; Nan, J.; Wang, C. Preparation and application of antifreeze soybean protein based gel electrolyte. For. Prod. Chem. Ind. 2023, 43, 36–42. [Google Scholar]
- Wang, Y.; Xa, Y.; Xang, P.; Dai, Y.; Gao, Y.; Xu, H.; Yu, J.; Gao, G.; Chen, K. Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chem. Eng. J. 2022, 428, 131171. [Google Scholar] [CrossRef]
- Fu, Z.; Li, D.; Liu, H.; Liu, R.; Lyu, Q.; Han, Y.; Wang, Y.; Zhang, K.; Chen, G.; Tian, Y. Antifreeze protein-based ultrastretchable and highly sensitive hydrogel for human-machine interaction. Chem. Eng. J. 2024, 488, 150775. [Google Scholar] [CrossRef]
- Balamurugan, S.; Ann, J.S.; Varghese, I.P.; Murugan, S.B.; Harish, M.C.; Kumar, S.R.; Sathishkumar, R. Heterologous expression of Lolium perenne antifreeze protein confers chilling tolerance in tomato. J. Integr. Agric. 2018, 17, 1128–1136. [Google Scholar] [CrossRef]
- Seo, J.H.; Naing, A.H.; Jeon, S.M.; Kim, C.K. Anti-freezing-protein type III strongly influences the expression of relevant genes in cryopreserved potato shoot tips. Plant Mol. Biol. 2018, 97, 347–355. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, B.; Feng, D.; He, Y.; Wang, J. Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants. Protein Expr. Purif. 2004, 35, 257–263. [Google Scholar] [CrossRef]
- Liu, M.; Liang, Y.; Zhang, H.; Wu, G.; Wang, L.; Qian, H.; Qi, X. Production of a recombinant carrot antifreeze protein by Pichia pastoris GS115 and its cryoprotective effects on frozen dough properties and bread quality. LWT-Food Sci. Technol. 2018, 96, 543–550. [Google Scholar] [CrossRef]
- Yeh, C.M.; Kao, B.Y.; Peng, H.J. Production of a recombinant type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat and frozen dough. J. Agric. Food Chem. 2009, 57, 6216–6223. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liao, A.; Liu, Y.; Chen, X.; Xue, Y.; Pan, L.; Huang, J.; Hou, Y. Preparation of antifreeze protein and its application in food industry. Food Res. Dev. 2023, 45, 186–192. [Google Scholar] [CrossRef]
- Uhlig, C.; Kabisch, J.; Palm, G.J.; Valentin, K.; Schweder, T.; Krell, A. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae). Cryobiology 2011, 63, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, S.G.; Do, H.; Park, J.C.; Kim, E.; Choe, Y.H.; Han, S.J.; Kim, H.J. Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl. Microbiol. Biotechnol. 2013, 97, 3383–3393. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Ma, T.; Wu, X.; Wang, S.; Wang, Z. Expression of recombinant antifreeze peptide in Lactococcus lactis and its antifreeze activity. Food Mach. 2017, 33, 123–127. [Google Scholar] [CrossRef]
- Qihong, Z.; Jie, L.; Xiao, X.; Qian, X.; Wei, G.; Jichen, X. PicW orthologs from spruce with differential freezing tolerance expressed in Escherichia coli. Int. J. Biol. Macromol. 2017, 101, 595–602. [Google Scholar] [CrossRef]
- Majewska, E.; Twarda-Clapa, A.; Jędrzejczak-Krzepkowska, M.; Kamińska-Dwórznicka, A.; Zakłos-Szyda, M.; Białkowska, A.M. Antifreeze proteins produced by Antarctic yeast from the genus Glaciozyma as cryoprotectants in food storage. PLoS ONE 2025, 20, e0318459. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Li, X.; Yang, F.; Huang, D.; Huang, J.; Wang, S.; Guyonnet, V. Snow flea antifreeze peptide for cryopreservation of lactic acid bacteria. Npj Sci. Food. 2022, 6, 10. [Google Scholar] [CrossRef]
- Kong, C.H.; Leung, I.K.; Sarojini, V. Synthetic insect antifreeze peptides modify ice crystal growth habit. CrystEngComm 2017, 19, 2163–2167. [Google Scholar] [CrossRef]
- Yang, H.; Ma, C.; Li, K.; Liu, K.; Loznik, M.; Teeuwen, R.; van Hest, J.; Zhou, X.; Herrmann, A.; Wang, J. Tuning ice nucleation with supercharged polypeptides. Adv. Mater. 2016, 28, 5008–5012. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Q.; Luo, J.; Wu, J.; Wang, S.; Wang, Z.; Gong, S.; Zhang, W.; Lan, X. Intracellular expression of antifreeze peptides in food grade Lactococcus lactis and evaluation of their cryoprotective activity. J. Food Sci. 2018, 83, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S. Cryoprotective effect of antifreeze glycopeptide analogues obtained by nonenzymatic glycation on Streptococcus thermophilus and its possible action mechanism. Food Chem. 2019, 288, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, L.; Li, Z.; Chen, J.; Zhang, Y.; Yang, X.; Chen, Q.; Cai, H.; Hong, P.; Zhu, C.; et al. The cryoprotective effect of an antifreeze collagen peptide complex obtained by enzymatic glycosylation on tilapia. Foods 2024, 13, 1319. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, D.W.; Zhu, Z. Type III antifreeze protein reduces freeze-induced denaturation of myofibrillar proteins in cod. Food Chem. 2022, 376, 131923. [Google Scholar] [CrossRef]
- Regand, A.; Goff, H.D. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J. Dairy Sci. 2006, 89, 49–57. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Wang, L. Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Res. Int. 2007, 40, 763–769. [Google Scholar] [CrossRef]
- Payne, S.R.; Sandford, D.; Harris, A.; Young, O.A. The effects of antifreeze proteins on chilled and frozen meat. Meat Sci. 1994, 37, 429–438. [Google Scholar] [CrossRef]
- Tang, S.; Chen, L.; Liu, H.; Li, Y.; Zhao, Y.; Wang, J.J. Antifreeze activity of soluble antarctic krill proteins and their cryoprotective action against Lactobacillus bulgaricus. Food Hydrocoll. 2025, 111, 111186. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Lu, J.F.; Lin, L.; Ye, Y.W.; Jiang, S.T. Optimization of cryoprotectant formula for silver carp surimi during frozen storage. Food Sci. 2012, 33, 127–132. [Google Scholar]
- Wang, S.; Zhao, J.; Chen, L.; Zhou, Y.; Wu, J. Preparation, isolation and hypothermia protection activity of antifreeze peptides from shark skin collagen. LWT-Food Sci. Technol. 2014, 55, 210–217. [Google Scholar] [CrossRef]
- Kittiphattanabawon, P.; Maqsood, S.; Visessanguan, W.; Benjakul, S. Gelatin hydrolysate in freeze–thawed shrimp model system: Cryoprotective and antioxidative effects. Int. J. Food Sci. Technol. 2023, 58, 4256–4263. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Li, X. Preparation, isolation and low temperature protection activity of natural antifreeze polypeptides. J. Fuzhou. Univ. Nat. Sci. Ed. 2013, 1, 121–126. Available online: https://link.cnki.net/urlid/35.1117.N.20130108.1123.012 (accessed on 8 May 2025).
- Fan, X.; Geng, W.; Li, M.; Wu, Z.; Ma, Y.; Li, Z.; Benjakul, S.; Zhao, Q. Cryoprotective effects and quality maintenance of antifreeze proteins and peptides on aquatic products: A review. Foods 2024, 13, 917. [Google Scholar] [CrossRef]
- Xie, G.; Timasheff, S.N. The thermodynamic mechanism of protein stabilization by trehalose. Biophys Chem. 1997, 64, 25–43. [Google Scholar] [CrossRef]
- Wu, S.; Pan, S.; Wang, H. Effect of trehalose on Lateolabrax japonicus myofibrillar protein during frozen storage. Food Chem. 2014, 160, 281–285. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, H.; Yang, H.; Yang, X.; Li, H.; Deng, S. Cryoprotective roles of trehalose and alginate oligosaccharides during frozen storage of peeled shrimp (Litopenaeus vannamei). Food Chem. 2017, 228, 257–264. [Google Scholar] [CrossRef]
- Sun, T.; Xu, X.; Ma, Y.; Yang, K.; Wang, R.; Gu, Y.; Li, S.; Qiu, Y.; Sun, D.; Xu, H.; et al. Structure, rheology, and antifreeze property of the exopolysaccharide from Naematelia aurantialba through basidiospore fermentation. Food Hydrocoll. 2023, 142, 108848. [Google Scholar] [CrossRef]
- Guerreiro, B.M.; Freitas, F.; Lima, J.C.; Silva, J.C.; Dionísio, M.; Reis, M.A. Demonstration of the cryoprotective properties of the fucose-containing polysaccharide FucoPol. Carbohydr. Polym. 2020, 245, 116500. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, R.; Gao, D.; Xu, H.; Zhang, S.; Yue, S.; Xu, H. Application of different cassava modified starches to fresh-keeping wet noodles. Agric Process. 2020, 5, 17–19. [Google Scholar]
- Zhang, F.; Liang, Y.; Tan, C.; Lu, Y.; Cui, B. Research on the water-holding capacity of pork sausage with acetate cassava starch. Starch-Stärke 2014, 66, 1033–1040. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Y.; Gao, D.; Zhang, X.; Wang, L.; Su, H.; Xie, X. Effect of several cassava modified starches on the quality of ham sausage. Agric. Process. 2019, 22, 11–14. [Google Scholar] [CrossRef]
- Qin, F.; Qiang, Y.; Wang, L.; Leng, P.; Lu, H.; Mei, Y. Effect of three starches and their modified starches on gel quality of minced beef. Food Ferment Ind. 2023, 49, 50–57. [Google Scholar] [CrossRef]
- Rattanasatheirn, N.; Benjakul, S.; Visessanguan, W.; Kijroongrojana, K. Properties, translucence, and microstructure of Pacific white shrimp treated with mixed phosphates as affected by freshness and deveining. J. Food Sci. 2008, 73, S31–S40. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yuan, P.; Heidolph, B.B.; Park, J.W. Physicochemical properties of frozen Alaska pollock fillets and surimi as affected by various sodium phosphates. J. Food Process. Preserv. 2018, 42, e13530. [Google Scholar] [CrossRef]
- Zhang, X.L.; Qi, X.E.; Yao, H.; Mao, J.L.; Zhang, B. Optimization of Preparation Process and Activity Evaluation of Phosphorylated Trehalose. J. Food Saf. Qual. 2020, 11, 1446–1451. [Google Scholar] [CrossRef]
- Wu, M.; Wang, X.; Wang, Z.; Li, C.; Wang, Y.; Xu, B. Effect of antifreeze and dip freezing on the quality of prepared steaks during frozen storage. J. Meat Res. 2024, 38, 61–66. [Google Scholar]
Type | Common Phosphate | Function | Application | Reference |
---|---|---|---|---|
Fish | STPP, SPP, HMP | Increase fish soaking weight gain rate and reduce cooking loss | Tilapia, catfish, snapper | [31,32,33] |
Shrimps | STPP, SPP, compound phosphate | Prevent frozen degeneration of shrimp meat and increase water retention | South American white shrimp, Penaeus vannamei | [34] |
Molluscs | STPP, SPP, compound phosphate | Keep the moisture in the shell meat and improve the edible quality | Oysters, scallops, flower clams | [35] |
Type | Application | Function | Limitations |
---|---|---|---|
AFP | Preservation of aquatic products. Improve the texture of ice cream. Maintain the fermentation capacity of frozen dough. Reduce frostbite from meat products. | Inhibition of ice crystal growth/recrystallization. Stable cell membrane. Reduced SAP loss. Maintaining protein structure. | 1. Activity is affected by structure/molecular weight/temperature. 2. Pentose (ribose, etc.) has poor freezing resistance and easily causes protein aggregation. 3. Natural sources are limited and large-scale application costs are high. |
AFPP | Microbial cryoprotection. Inhibition of lipid oxidation of frozen shrimp. To improve the survival rate of E. coli after freezing. | Collagen hydrolysate enhanced the freezing resistance of the strain. Good antioxidant effect. Reduce the freezing damage of bacteria. | 1. Bitter taste and color adversely affect product quality. 2. High technical difficulty in separation and purification. 3. The underlying functional mechanisms need to be further studied. |
AFPL | Reducing thawing/cooking losses of seafood such as shrimp. Improve the texture of low-temperature meat products. Stabilize protein/cell membranes as a bioprotective agent. | Trehalose and alginate oligosaccharides synergetic for water retention. APS-A showed thermal stability/freezing resistance. The modified starch inhibited the recrystallization of ice crystals. | 1. Introduce sweetness and heat, not suitable for patients with high blood sugar/high blood lipid. 2. High production cost. 3. Insufficient safety evaluation of novel polysaccharides. 4. The mechanism of action is unclear. |
AFPS | Improve the transparency of shrimp and reduce cooking loss. Optimize the rehydration of freeze-dried shellfish. Defrosting of cod/surimi. | Phosphate enhances ion repulsion. STPP/TSPP inhibited enzyme activity and promoted salt-soluble protein extraction. Complex sugars enhance water retention. | 1. SPP/STPP is easily degraded in freezing. 2. Increased risk of hypertension/chronic kidney disease. 3. Efficacy is limited by solubility/antioxidant/dosage. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Xu, Q.; Ding, H.; Zhao, D.; Wang, Y.; Xu, B. Application of Antifreeze Substances in Food Cryopreservation. Foods 2025, 14, 2089. https://doi.org/10.3390/foods14122089
Wu M, Xu Q, Ding H, Zhao D, Wang Y, Xu B. Application of Antifreeze Substances in Food Cryopreservation. Foods. 2025; 14(12):2089. https://doi.org/10.3390/foods14122089
Chicago/Turabian StyleWu, Mengxia, Qin Xu, Han Ding, Dumin Zhao, Ying Wang, and Baocai Xu. 2025. "Application of Antifreeze Substances in Food Cryopreservation" Foods 14, no. 12: 2089. https://doi.org/10.3390/foods14122089
APA StyleWu, M., Xu, Q., Ding, H., Zhao, D., Wang, Y., & Xu, B. (2025). Application of Antifreeze Substances in Food Cryopreservation. Foods, 14(12), 2089. https://doi.org/10.3390/foods14122089