Impact of Rearing Duration on Nutritional Composition, Flavor Characteristics, and Physical Properties of Asian Swamp Eel (Monopterus albus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Experimental Management
2.3. Sample Collection
2.4. Experimental Detection
2.4.1. Muscle Component Analysis
2.4.2. Muscle Texture, Slice Analysis
2.5. Data Analysis
3. Results
3.1. Content of Fatty Acid in Muscle
3.2. Content of Amino Acids in Muscle
3.3. Content of Gamma-Aminobutyric Acid, Triglycerides, and Cholesterol in Muscle
3.4. Principal Component Analysis of Muscle Nutritional Components
3.5. Muscle Texture Analysis
3.6. Slice Analysis
3.7. Correlation Between Muscle Texture and Muscle Fiber Parameters
4. Discussion
4.1. The Effect of Different Rearing Years on Nutritional Composition in M. albus Muscle
4.2. The Effect of Different Rearing Years on Flavor Quality in M. albus Muscle
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mao, T.; Gan, J.; Yu, Y.; Dong, L.; Zhang, L.; Zhang, T.; Cheng, B.; He, L. Evaluation of Muscle Quality of Monopterus albus from Different Sources. For. Chem. Rev. 2022, 211–222. [Google Scholar]
- Fishery Administration Bureau of the Ministry of Agriculture and Rural Affairs; National Aquaculture Technology Promotion Station. Chinese Fisheries Society China Fisheries Statistical Yearbook 2023; Ministry of Agriculture and Rural Affairs: Beijing, China, 2023.
- Wang, Y.; Lin, W.; Li, L.; Yang, S.; Huang, H.; Yang, X.; Wu, Y.; Wang, L. Basic Nutrient Composition Analysis of Freshwater Fish Muscles Based on Four Orders and Thirteen Species. Sci. Technol. Food Ind. 2019, 40, 277–283. [Google Scholar]
- Johnston, I.A. Genetic and environmental determinants of muscle growth patterns. Fish Physiol. 2001, 18, 141–186. [Google Scholar]
- Yi, C.; Huang, D.; Yu, H.; Gu, J.; Liang, H.; Ren, M. Enzymatically Hydrolyzed Poultry By-Product Supplementation, Instead of Fishmeal, Alone Improves the Quality of Largemouth Bass (Micropterus salmoides) Back Muscle without Compromising Growth. Foods 2023, 12, 3485. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Liu, Y. Effect of Body Weight on the Nutritional Content of Rice Field Eel, Monopterus albus. Aquacult. Res. 2023, 2023, 9928273. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, F.; Zhang, W.-B.; Parisi, G.; Du, Z.-Y.; Zhang, M.-L. The Flesh Texture of Teleost Fish: Characteristics and Interventional Strategies. Rev. Aquacult. 2024, 16, 508–535. [Google Scholar] [CrossRef]
- Mutlu, A.S.; Duffy, J.; Wang, M.C. Lipid Metabolism and Lipid Signals in Aging and Longevity. Dev. Cell 2021, 56, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Sarri, L.; Balcells, J.; Seradj, A.R.; de la Fuente, G. Protein Turnover in Pigs: A Review of Interacting Factors. J. Anim. Physiol. Anim. Nutr. 2024, 108, 451–469. [Google Scholar] [CrossRef]
- Kiessling, A.; Pickova, J.; Eales, J.G.; Dosanjh, B.; Higgs, D. Age, Ration Level, and Exercise Affect the Fatty Acid Profile of Chinook Salmon (Oncorhynchus tshawytscha) Muscle Differently. Aquaculture 2005, 243, 345–356. [Google Scholar] [CrossRef]
- Rao, J. Comparative Study on Muscle Quality of Crayfish (Procambarus clarkii) in Different Culture Stages. Master’s Dissertation, Sichuan Agricultural University, Yaan, China, 2021. [Google Scholar]
- Wang, K. Studies on Meat Quality and Related Candidate Gene of Culter alburnus in Xingkai Lake. Ph.D. Dissertation, Northeast Agricultural University, Harbin, China, 2013. [Google Scholar]
- Aragão, C.; Conceição, L.E.C.; Fyhn, H.-J.; Teresa Dinis, M. Estimated Amino Acid Requirements during Early Ontogeny in Fish with Different Life Styles: Gilthead Seabream (Sparus aurata) and Senegalese Sole (Solea senegalensis). Aquaculture 2004, 242, 589–605. [Google Scholar] [CrossRef]
- Kenari, A.A.; Regenstein, J.M.; Hosseini, S.V.; Rezaei, M.; Tahergorabi, R.; Nazari, R.M.; Mogaddasi, M.; Kaboli, S.A. Amino Acid and Fatty Acid Composition of Cultured Beluga (Huso huso) of Different Ages. J. Aquat. Food Prod. Technol. 2009, 18, 245–265. [Google Scholar] [CrossRef]
- Gao, X. Amino Acid Content and Composition in Female American Shad, Alosa sapidissima, at Different Stages of Ovarian Development. Open J. Fish. Res. 2019, 6, 163–171. [Google Scholar] [CrossRef]
- Periago, M.J.; Ayala, M.D.; López-Albors, O.; Abdel, I.; Martínez, C.; García-Alcázar, A.; Ros, G.; Gil, F. Muscle Cellularity and Flesh Quality of Wild and Farmed Sea Bass, Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Johnston, I.A.; Li, X.; Vieira, V.L.A.; Nickell, D.; Dingwall, A.; Alderson, R.; Campbell, P.; Bickerdike, R. Muscle and Flesh Quality Traits in Wild and Farmed Atlantic Salmon. Aquaculture 2006, 256, 323–336. [Google Scholar] [CrossRef]
- López-Albors, O.; Abdel, I.; Periago, M.J.; Ayala, M.D.; Alcázar, A.G.; Graciá, C.M.; Nathanailides, C.; Vázquez, J.M. Temperature Influence on the White Muscle Growth Dynamics of the Sea Bass Dicentrarchus labrax, L. Flesh Quality Implications at Commercial Size. Aquaculture 2008, 277, 39–51. [Google Scholar] [CrossRef]
- Rincón, L.; Castro, P.L.; Álvarez, B.; Hernández, M.D.; Álvarez, A.; Claret, A.; Guerrero, L.; Ginés, R. Differences in Proximal and Fatty Acid Profiles, Sensory Characteristics, Texture, Colour and Muscle Cellularity between Wild and Farmed Blackspot Seabream (Pagellus bogaraveo). Aquaculture 2016, 451, 195–204. [Google Scholar] [CrossRef]
- Zhao, H.; Xia, J.; Zhang, X.; He, X.; Li, L.; Tang, R.; Chi, W.; Li, D. Diet Affects Muscle Quality and Growth Traits of Grass Carp (Ctenopharyngodon idellus): A Comparison between Grass and Artificial Feed. Front. Physiol. 2018, 9, 283. [Google Scholar] [CrossRef]
- Chen, F.; Lou, Y.; Guan, J.; Lan, X.; Su, Z.; Xu, C.; Li, Y.; Xie, D. Rapeseed and Palm Oils Can Improve the Growth, Muscle Texture, Fatty Acids and Volatiles of Marine Teleost Golden Pompano Fed Low Fish Oil Diets. Foods 2025, 14, 788. [Google Scholar] [CrossRef]
- He, Z.; Xu, C.; Chen, F.; Lou, Y.; Nie, G.; Xie, D. Dietary DHA Enhanced the Textural Firmness of Common Carp (Cyprinus carpio L.) Fed Plant-Derived Diets through Restraining FoxO1 Pathways. Foods 2022, 11, 3600. [Google Scholar] [CrossRef]
- Liu, J.; Deng, K.; Pan, M.; Liu, G.; Wu, J.; Yang, M.; Huang, D.; Zhang, W.; Mai, K. Dietary Carbohydrates Influence Muscle Texture of Olive Flounder Paralichthys olivaceus Through Impacting Mitochondria Function and Metabolism of Glycogen and Protein. Sci. Rep. 2020, 10, 21811. [Google Scholar] [CrossRef]
- Yu, K.; Wang, C.; Huang, K.; Yang, X.; Luo, Y.; Huang, J.; Wang, D.; Li, J.; Jie, B.; Tang, Z.; et al. Exploring the Muscle-Hardening Mechanisms via the Muscle-Gut Axis in Tilapia (Oreochromis niloticus) Fed with Faba Bean (Vicia faba L.) Supplementary Diets. Aquacult. Rep. 2024, 37, 102268. [Google Scholar] [CrossRef]
- Herawati, V.E.; Nugroho, R.A.; Pinandoyo; Hutabarat, J.; Prayitno, B.; Karnaradjasa, O. The Growth Performance and Nutrient Quality of Asian Swamp Eel Monopterus albus in Central Java Indonesia in a Freshwater Aquaculture System with Different Feeds. J. Aquat. Food Prod. Technol. 2018, 27, 658–666. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, Q.; Rahman, M.M.; Lv, W.; Huang, W.; Hu, W.; Zhou, W. Biochemical, Histological, and Transcriptomic Analyses Reveal Underlying Differences in Flesh Quality between Wild and Farmed Ricefield Eel (Monopterus albus). Foods 2024, 13, 1751. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhong, L.; Zhang, J.; Ma, X.; Zhong, H.; Peng, M.; He, H.; Hu, Y. Substitution of Fish Meal with Krill Meal in Rice Field Eel (Monopterus albus) Diets: Effects on Growth, Immunity, Muscle Textural Quality, and Expression of Myogenic Regulation Factors. Anim. Feed Sci. Technol. 2021, 280, 115047. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Zhong, L.; Chu, W.; Hu, Y. A Study on Methionine-Mediated Regulation of Muscle Fiber Growth, Development and Differentiation in the Rice Field Eel (Monopterus albus). Aquaculture 2022, 547, 737430. [Google Scholar] [CrossRef]
- Mao, Y.; Lv, W.; Huang, W.; Yuan, Q.; Yang, H.; Zhou, W.; Li, M. Effects on Growth Performance and Immunity of Monopterus albus after High Temperature Stress. Front. Physiol. 2024, 15, 1397818. [Google Scholar] [CrossRef]
- GB:5009.168-2016; National Food Safety Standard-Determination of Fatty Acids in Food. Standards Press of China: Beijing, China, 2016.
- Fu, D.; Shen, Y.; Wan, Y.; Zhang, L.; Xu, Z.; Zhang, W.; Xia, W. Determination of amino acids in mannatide by online pre-column OPA-FMOC derivatization HPLC. Chin. J. Anal. Lab. 2016, 35, 353–356. [Google Scholar]
- NY/T 2890-2016; Determination of Gamma Aminobutyric Acid in Rice-HPLC. Standards Press of China: Beijing, China, 2016.
- GB 5009.128-2016; National Food Safety Standard-Determination of Cholesterol in Food. Standards Press of China: Beijing, China, 2016.
- Witak, B. Tissue Composition of Carcass, Meat Quality and Fatty Acid Content of Ducks of a Commercial Breeding Line at Different Age. Arch. Anim. Breed. 2008, 51, 266–275. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Homolková, D.; Božik, M.; Plachý, V.; Vrabec, V. Effect of Developmental Stage on the Nutritional Value of Edible Insects. A Case Study with Blaberus craniifer and Zophobas morio. J. Food Compos. Anal. 2020, 92, 103570. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef]
- Lim, W.; Mudge, K.W.; Vermeylen, F. Effects of Population, Age, and Cultivation Methods on Ginsenoside Content of Wild American Ginseng (Panax quinquefolium). J. Agric. Food Chem. 2005, 53, 8498–8505. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, C.; Shi, H.; Liao, Y.; Xu, F.; Du, H.; Xiao, H.; Zheng, J. Nutrients and Bioactives in Citrus Fruits: Different Citrus Varieties, Fruit Parts, and Growth Stages. Crit. Rev. Food Sci. Nutr. 2023, 63, 2018–2041. [Google Scholar] [CrossRef]
- Mao, G.; Zhao, W. Comparison on Muscle Quality of Longchang, Taihu and New Taihu Goose. Anim. Sci. Vet. Med. 2000, 17, 16–19. [Google Scholar]
- Xu, Y.; Han, J.; Chen, H.; Zhong, Y.; Ding, Z. Effect and Mechanism of Highly Unsaturated Fatty Acids on Growth, Development and Reproduction in Aquatic Animals. Fish. Sci. 2018, 37, 271–277. [Google Scholar]
- Lunn, J.; Theobald, H.E. The Health Effects of Dietary Unsaturated Fatty Acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Coniglio, S.; Shumskaya, M.; Vassiliou, E. Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology 2023, 12, 279. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of Fatty Acids on Meat Quality: A Review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Department of Health Großbritannien. Nutritional Aspects of Cardiovascular Disease; HM Stationery Office: Norwich, UK, 1994.
- Enser, M.; Hallett, K.; Hewitt, B.; Fursey, G.A.J.; Wood, J.D. Fatty Acid Content and Composition of English Beef, Lamb and Pork at Retail. Meat Sci. 1996, 42, 443–456. [Google Scholar] [CrossRef]
- Zhao, F.; Zhuang, P.; Song, C.; Shi, Z.; Zhang, L. Amino acid and fatty acid compositions and nutritional quality of muscle in the pomfret, Pampus punctatissimus. Food Chem. 2010, 118, 224–227. [Google Scholar] [CrossRef]
- De Carvalho, C.C.C.R.; Caramujo, M.J. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef]
- Barrientos Moreno, L.; Espinosa-Urgel, M. Biofilm Stress Responses Associated to Aromatic Hydrocarbons. In Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions. Handbook of Hydrocarbon and Lipid Microbiology; Springer: Cham, Switzerland, 2018; pp. 105–115. [Google Scholar]
- Cao, D.; Kevala, K.; Kim, J.; Moon, H.-S.; Jun, S.B.; Lovinger, D.; Kim, H.-Y. Docosahexaenoic Acid Promotes Hippocampal Neuronal Development and Synaptic Function. J. Neurochem. 2009, 111, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M. Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases. J. Glycom. Lipidom. 2014, 4, 1000123. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Gilani, G.S. Amino acid analysis. Curr. Protoc. Protein Sci. 2009, 58, 11.9.1–11.9.37. [Google Scholar] [CrossRef] [PubMed]
- Webb, K.E., Jr. Intestinal Absorption of Protein Hydrolysis Products: A Review. J. Anim. Sci. 1990, 68, 3011–3022. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Kuang, Y.; Wang, N. Amino Acids Biostimulants and Protein Hydrolysates in Agricultural Sciences. Plants 2024, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Andorsky, D.J.; Lund, D.P.; Lillehei, C.W.; Jaksic, T.; DiCanzio, J.; Richardson, D.S.; Collier, S.B.; Lo, C.; Duggan, C. Nutritional and Other Postoperative Management of Neonates with Short Bowel Syndrome Correlates with Clinical Outcomes. J. Pediatr. 2001, 139, 27–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Quan, Z.; Xiao, P.; Duan, J.-A. New Insights into Antioxidant Peptides: An Overview of Efficient Screening, Evaluation Models, Molecular Mechanisms, and Applications. Antioxidants 2024, 13, 203. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Elango, R.; Ball, R.O.; Pencharz, P.B. Amino Acid Requirements in Humans: With a Special Emphasis on the Metabolic Availability of Amino Acids. Amino Acids. 2009, 37, 19–27. [Google Scholar] [CrossRef]
- Yuan, Y.; Tong, Q.; Xu, Q.; Ge, S.; Sun, H.; Shan, H.; Zhang, K. The Research on the Alteration of Plasma Levels of Glutamic Acid, Aspartic Acid and γ-aminobutyricAcid in Early Parkinson’s Disease Patients and Its Diagnostic Value. Chin. J. Clin. Neurosci. 2013, 21, 601–605. [Google Scholar]
- Zhao, J.; Li, X.; Peng, S.; Zheng, X.; Li, B.; Wei, J.; Leng, X. Comparative Study on The Utilization of Different Lysine Sources by Channel Catfish (Ictalurus punctatus). Acta Hydrobiol. Sin. 2016, 40, 19–26. [Google Scholar] [CrossRef]
- Rønnestad, I.; Fyhn, H.J.; Gravningen, K. The Importance of Free Amino Acids to the Energy Metabolism of Eggs and Larvae of Turbot (Scophthalmus maximus). Mar. Biol. 1992, 114, 517–525. [Google Scholar] [CrossRef]
- Sallam, M.Y.; El-Gowilly, S.M.; Abdel-Galil, A.-G.A.; El-Mas, M.M. Central GABAA Receptors Are Involved in Inflammatory and Cardiovascular Consequences of Endotoxemia in Conscious Rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Sarasa, S.B.; Mahendran, R.; Muthusamy, G.; Thankappan, B.; Selta, D.R.F.; Angayarkanni, J. A Brief Review on the Non-Protein Amino Acid, Gamma-Amino Butyric Acid (GABA): Its Production and Role in Microbes. Curr. Microbiol. 2020, 77, 534–544. [Google Scholar] [CrossRef]
- Savage, K.; Firth, J.; Stough, C.; Sarris, J. GABA-Modulating Phytomedicines for Anxiety: A Systematic Review of Preclinical and Clinical Evidence. Phytother. Res. 2018, 32, 3–18. [Google Scholar] [CrossRef]
- Norlin, M.; Wikvall, K. Enzymes in the Conversion of Cholesterol into Bile Acids. Curr. Mol. Med. 2007, 7, 199–218. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maitra, U. Chemistry and Biology of Bile Acids. Curr. Sci. 2004, 87, 1666–1683. [Google Scholar]
- Warren, T.; McAllister, R.; Morgan, A.; Rai, T.S.; McGilligan, V.; Ennis, M.; Page, C.; Kelly, C.; Peace, A.; Corfe, B.M.; et al. The Interdependency and Co-Regulation of the Vitamin D and Cholesterol Metabolism. Cells 2021, 10, 2007. [Google Scholar] [CrossRef]
- Terao, T.; Nakamura, J.; Yoshimura, R.; Ohmori, O.; Takahashi, N.; Kojima, H.; Soeda, S.; Shinkai, T.; Nakano, H.; Okuno, T. Relationship between Serum Cholesterol Levels and Meta-Chlorophenylpiperazine-Induced Cortisol Responses in Healthy Men and Women. Psychiatry Res. 2000, 96, 167–173. [Google Scholar] [CrossRef]
- Isojärvi, H.; Keinänen-Kiukaanniemi, S.; Kallio, M.; Kaikkonen, K.; Jämsä, T.; Korpelainen, J.; Korpelainen, R. Association of Insulin and Cholesterol Levels with Peripheral Nervous System Function in Overweight Adults: A 3-Year Follow-Up. J. Clin. Neurophysiol. 2017, 34, 492. [Google Scholar] [CrossRef]
- Aguilar-Ballester, M.; Herrero-Cervera, A.; Vinué, Á.; Martínez-Hervás, S.; González-Navarro, H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020, 12, 2021. [Google Scholar] [CrossRef] [PubMed]
- Gormsen, L.C.; Jensen, M.D.; Schmitz, O.; Møller, N.; Christiansen, J.S.; Nielsen, S. Energy Expenditure, Insulin, and VLDL-Triglyceride Production in Humans. J. Lipid Res. 2006, 47, 2325–2332. [Google Scholar] [CrossRef]
- Ma, H. Cholesterol and Human Health. J. Am. Sci. 2006, 2, 46–50. [Google Scholar]
- Cai, L.; Tong, F.; Tang, T.; Ao, Z.; Wei, Z.; Yang, F.; Shu, Y.; Liu, S.; Mai, K. Comparative Evaluation of Nutritional Value and Flavor Quality of Muscle in Triploid and Diploid Common Carp: Application of Genetic Improvement in Fish Quality. Aquaculture 2021, 541, 736780. [Google Scholar] [CrossRef]
- Wu, Y.; An, Y.; Xiong, S. Research Progress in the Formation and Regulation of Fish Soup Flavor. Food Sci. 2023, 44, 251–260. [Google Scholar]
- Qin, K.; Meng, X.; Xu, Z. Research Progress of Umami Substances and Their Formation Mechanism in Pork. Acta Agric. Zhejiangensis 2024, 36, 719–728. [Google Scholar]
- Stilborn, H.L.; Moran, E.T.; Gous, R.M.; Harrison, M.D. Influence of Age on Carcass (Feather-Free) Amino Acid Content for Two Broiler Strain-Crosses and Sexes. J. Appl. Poult. Res. 2010, 19, 13–23. [Google Scholar] [CrossRef]
- Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef]
- Reinitz, G. Relative Effect of Age, Diet, and Feeding Rate on the Body Composition of Young Rainbow Trout (Salmo gairdneri). Aquaculture 1983, 35, 19–27. [Google Scholar] [CrossRef]
- Lin, W.-L.; Zeng, Q.-X.; Zhu, Z.-W.; Song, G.-S. Relation Between Protein Characteristics and Tpa Texture Characteristics of Crisp Grass Carp (Ctenopharyngodon idellus C. Et V) and Grass Carp (Ctenopharyngodon idellus). J. Texture Stud. 2012, 43, 1–11. [Google Scholar] [CrossRef]
- Zhao, L.; Liang, J.; Chen, F.; Tang, X.; Liao, L.; Liu, Q.; Luo, J.; Du, Z.; Li, Z.; Luo, W.; et al. High Carbohydrate Diet Induced Endoplasmic Reticulum Stress and Oxidative Stress, Promoted Inflammation and Apoptosis, Impaired Intestinal Barrier of Juvenile Largemouth Bass (Micropterus salmoides). Fish Shellfish. Immunol. 2021, 119, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, C.; Chen, Y.; Gao, F.; Xu, X.; Zhou, G. Changes in Meat Quality of Ovine Longissimus dorsi Muscle in Response to Repeated Freeze and Thaw. Meat Sci. 2012, 92, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Hatae, K.; Yoshimatsu, F.; Matsumoto, J.J. Role of Muscle Fibers in Contributing Firmness of Cooked Fish. J. Food Sci. 1990, 55, 693–696. [Google Scholar] [CrossRef]
- Bugeon, J.; Lefevre, F.; Fauconneau, B. Fillet Texture and Muscle Structure in Brown Trout (Salmo trutta) Subjected to Long-Term Exercise. Aquacult. Res. 2003, 34, 1287–1295. [Google Scholar] [CrossRef]
- Mørkøre, T.; Ruohonen, K.; Kiessling, A. Variation in Texture of Farmed Atlantic Salmon (Salmo salar L.) Relevance of Muscle Fiber Cross-Sectional Area. J. Texture Stud. 2009, 40, 1–15. [Google Scholar] [CrossRef]
- Kim, G.D.; Overholt, M.F.; Lowell, J.E.; Harsh, B.N.; Klehm, B.J.; Dilger, A.C.; Boler, D.D. Evaluation of Muscle Fiber Characteristics Based on Muscle Fiber Volume in Porcine Longissimus Muscle in Relation to Pork Quality. Meat Muscle Biol. 2018, 2, 362. [Google Scholar] [CrossRef]
- Żochowska-Kujawska, J.; Lachowicz, K.; Sobczak, M.; Gajowiecki, L. Effects of Carcass Weight and Muscle on Texture, Structure, Rheological Properties and Myofibre Characteristics of Roe Deer. Am. J. Anim. Vet. Sci. 2007, 2, 114–120. [Google Scholar]
- Migdal, W.; Rozycki, M.; Mucha, A.; Tyra, M.; Natonek-Wisniewska, M.; Walczycka, M.; Kulawik, P.; Wesierska, E.; Zajac, M.; Tkaczewska, J.; et al. Meat Texture Profile and Cutting Strength Analyses of Pork Depending on Breed and Age. Ann. Anim. Sci. 2020, 20, 677–692. [Google Scholar] [CrossRef]
- Maltin, C.A.; Sinclair, K.D.; Warriss, P.D.; Grant, C.M.; Porter, A.D.; Delday, M.I.; Warkup, C.C. The Effects of Age at Slaughter, Genotype and Finishing System on the Biochemical Properties, Muscle Fibre Type Characteristics and Eating Quality of Bull Beef from Suckled Calves. Anim. Sci. 1998, 66, 341–348. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Feng, L.; Wu, P.; Liu, Y.; Ren, H.-M.; Jin, X.-W.; Jiang, J.; Kuang, S.-Y.; Li, S.-W.; Tang, L.; et al. Modification of Beneficial Fatty Acid Composition and Physicochemical Qualities in the Muscle of Sub-Adult Grass Carp (Ctenopharyngodon idella): The Role of Lipids. Aquaculture 2022, 561, 738656. [Google Scholar] [CrossRef]
- Yang, R.; Chen, Y.; Sun, C.; Zhang, L.; Liu, G.; Cao, M. Quality Change of Sea Bass (Lateolabrax japonicas) Muscle during Cold Storage at 4 °C. Food Sci. 2023, 44, 239–245. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xu, W.; Lv, W.; Yuan, Q.; Yang, H.; Huang, W.; Zhou, W. Impact of Rearing Duration on Nutritional Composition, Flavor Characteristics, and Physical Properties of Asian Swamp Eel (Monopterus albus). Foods 2025, 14, 1685. https://doi.org/10.3390/foods14101685
Zhang Y, Xu W, Lv W, Yuan Q, Yang H, Huang W, Zhou W. Impact of Rearing Duration on Nutritional Composition, Flavor Characteristics, and Physical Properties of Asian Swamp Eel (Monopterus albus). Foods. 2025; 14(10):1685. https://doi.org/10.3390/foods14101685
Chicago/Turabian StyleZhang, Yuning, Wentao Xu, Weiwei Lv, Quan Yuan, Hang Yang, Weiwei Huang, and Wenzong Zhou. 2025. "Impact of Rearing Duration on Nutritional Composition, Flavor Characteristics, and Physical Properties of Asian Swamp Eel (Monopterus albus)" Foods 14, no. 10: 1685. https://doi.org/10.3390/foods14101685
APA StyleZhang, Y., Xu, W., Lv, W., Yuan, Q., Yang, H., Huang, W., & Zhou, W. (2025). Impact of Rearing Duration on Nutritional Composition, Flavor Characteristics, and Physical Properties of Asian Swamp Eel (Monopterus albus). Foods, 14(10), 1685. https://doi.org/10.3390/foods14101685