Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin and Collection of Strawberry Juice Production Wastewater (SJPW)
2.2. Analysis of the Basic Nutritional Profile of SJPW
2.3. Analysis of Antioxidants’ Content of the Extracts of SJPW
2.3.1. LC–MS/MS Analysis of Selected Phenolic Compounds in the SJPW
2.3.2. Determination of Total Phenolic Content in the SJPW
2.3.3. Determination of Total Flavonoid Content in the SJPW
2.4. Estimation of Antioxidant Potential of Extracts from the SJPW
2.4.1. DPPH Assay
2.4.2. FRAP Assay
2.5. Microbial Active Component
2.6. Biostimulant Production—Cultivation Conditions and Monitoring
2.7. In Vitro PGP (Plant Growth Promotion) Traits Screening of the Produced Biostimulant
2.8. PGP Activity of the Biostimulant in the Seed Germination Phase
3. Results
3.1. Basic Nutritional Profile of SJPW
3.2. Antioxidant Content and Antioxidant Potential of SJPW
3.3. Course of Bacillus sp. BioSol021 Cultivation Using SJPW as a Medium
3.4. PGP Traits of Microbial Active Component
3.5. PGP of the Microbial Biostimulant in the Initial Growth Phases of Tomato
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Zhang, H.; Tian, J.; Shi, J.; Linhardt, R.J.; Ye, T.D.X.; Chen, S. Recovery of high value-added nutrients from fruit and vegetable industrial wastewater. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Rashid, N.; Abdelnabi, M.N.A.; Vincent, A.S.; Mackey, H.R. Simultaneous treatment of fruit juice industry wastewater and single-cell protein synthesis using purple non-sulfur bacteria. Biomass Convers. Biorefinery 2023, 13, 16321–16332. [Google Scholar] [CrossRef]
- Amor, C.; Lucas, M.S.; Pirra, A.J.; Peres, J.A. Treatment of concentrated fruit juice wastewater by the combination of biological and chemical processes. J. Environ. Sci. Health—Part A Toxic/Hazardous Subst. Environ. Eng. 2012, 47, 1809–1817. [Google Scholar] [CrossRef]
- Fruit Juice Market Report by Product Type (100% Fruit Juice, Nectars, Juice Drinks, Concentrates, Powdered Juice, and Others), Flavor (Orange, Apple, Mango, Mixed Fruit, and Others), Distribution Channel (Supermarkets and Hypermarkets, Convenience Stores, Specialty Food Stores, Online Retail, and Others), and Region 2024–2032. Available online: https://www.imarcgroup.com/fruit-juice-manufacturing-plant (accessed on 4 August 2024).
- Esturo, A.; Lizundia, E.; Sáez de Cámara, E. Fruit Juice Industry’s transition towards sustainability from the viewpoint of the producers. Sustainability 2023, 15, 3066. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef]
- Simkova, K.; Veberic, R.; Hudina, M.; Grohar, M.C.; Ivancic, T.; Smrke, T.; Pelacci, M.; Jakopic, J. Berry size and weight as factors influencing the chemical composition of strawberry fruit. J. Food Compos. Anal. 2023, 123, 105509. [Google Scholar] [CrossRef]
- Milosavljević, D.; Maksimović, V.; Milivojević, J.; Djekić, I.; Wolf, B.; Zuber, J.; Vogt, C.; Dragišić Maksimović, J. Sugars and organic acids in 25 strawberry cultivars: Qualitative and quantitative evaluation. Plants 2023, 12, 2238. [Google Scholar] [CrossRef] [PubMed]
- Kabir, F.; Tow, W.W.; Hamauzu, Y.; Katayama, S.; Tanaka, S.; Nakamura, S. Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chem. 2015, 167, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Müller-Maatsch, J.; Bencivenni, M.; Caligiani, A.; Tedeschi, T.; Bruggeman, G.; Bosch, M.; Sforza, S. Pectin content and composition from different food waste streams. Food Chem. 2016, 201, 37–45. [Google Scholar] [CrossRef]
- Vargas, E.F.D.; Jablonski, A.E.; Flôres, S.H.; Rios, A.D.O. Waste from peach (Prunus persica) processing used for optimisation of carotenoids ethanolic extraction. Int. J. Food Sci. Technol. 2016, 52, 757–762. [Google Scholar] [CrossRef]
- Suliman, S.S.; Othman, N.; Noah, N.F.M.; Kahar, I.N.S. Separation of phenolic compounds from fruit processing wastewater using liquid membrane technology: A Short Review. Biochem. Eng. J. 2023, 200, 109096. [Google Scholar] [CrossRef]
- Franzen Ramos, L.; Pluschke, J.; Bernardes, A.M.; Geißen, S.U. Polyphenols in food processing wastewaters: A review on their identification and recovery. Clean. Circ. Bioeconomy 2023, 5, 100048. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R.; Castro-Muñoz, R. Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int. J. Mol. Sci. 2018, 19, 351. [Google Scholar] [CrossRef]
- Hellwig, V.; Gasser, J. Polyphenols from waste streams of food industry: Valorisation of blanch water from marzipan production. Phytochem. Rev. 2020, 19, 1539–1546. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of Sugar and organic acid of fruit juices: A comparative study and implication for authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Costa, C.F.F.A.; Amorim, C.L.; Duque, A.F.; Reis, M.A.M.; Castro, P.M.L. Valorization of wastewater from food industry: Moving to a circular bioeconomy. Rev. Environ. Sci. Biotechnol. 2022, 21, 269–295. [Google Scholar] [CrossRef]
- Ferraz, D.; Pyka, A. Circular economy, bioeconomy, and sustainable development goals: A systematic literature review. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef]
- Hadley Kershaw, E.; Hartley, S.; McLeod, C.; Polson, P. The sustainable path to a circular bioeconomy. Trends Biotechnol. 2021, 39, 542–545. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Fusco, G.M.; Nicastro, R.; Rouphael, Y.; Carillo, P. The Effects of the microbial biostimulants approved by EU Regulation 2019/1009 on yield and quality of vegetable crops. Foods 2022, 11, 2656. [Google Scholar] [CrossRef]
- Barros-Rodríguez, A.; Rangseekaew, P.; Lasudee, K.; Pathom-Aree, W.; Manzanera, M. Regulatory risks associated with bacteria as biostimulants and biofertilizers in the frame of the European Regulation (EU) 2019/1009. Sci. Total Environ. 2020, 740, 140239. [Google Scholar] [CrossRef] [PubMed]
- Sector Analysis of Fruit Production and Processing in the Republic of Serbia. Available online: http://lokalno.org/PDF/43.pdf (accessed on 5 August 2024).
- SFRY. Ordinance on methods of taking samples and performing chemical and physical analyzes for the purpose of quality control of fruit and vegetable products. Off. Gaz. SFRY 1983, 29. [Google Scholar]
- Marcó, A.; Rubio, R.; Compañó, R.; Casals, I. Comparison of the Kjeldahl Method and a combustion method for total nitrogen determination in animal feed. Talanta 2002, 57, 1019–1026. [Google Scholar] [CrossRef]
- Vračar, O.L. Manual for Quality Control of Fresh and Processed Fruits and Vegetables and Mushrooms and Refreshing Soft Drinks; University of Novi Sad, Faculty of Technology: Novi Sad, Serbia, 2001. [Google Scholar]
- Simin, N.; Živanović, N.; Božanić Tanjga, B.; Lesjak, M.; Narandžić, T.; Ljubojević, M. New Garden Rose (Rosa × hybrida) Genotypes with Intensely Colored Flowers as Rich Sources of Bioactive Compounds. Plants 2024, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative Determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef]
- Lesjak, M.M.; Beara, I.N.; Orčić, D.Z.; Anačkov, G.T.; Balog, K.J.; Francišković, M.M.; Mimica-Dukić, N.M. Juniperus sibirica Burgsdorf. as a novel source of antioxidant and anti-inflammatory agents. Food Chem. 2011, 124, 850–856. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Božin, B.; Simin, M.; Natasa, S. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef]
- Vlajkov, V.; Grahovac, M.; Budakov, D.; Loc, M.; Pajčin, I.; Milić, D.; Novaković, T.; Grahovac, J. Distribution, genetic diversity and biocontrol of aflatoxigenic Aspergillus flavus in Serbian maize fields. Toxins 2021, 13, 687. [Google Scholar] [CrossRef]
- Dmitrović, S.; Pajčin, I.; Lukić, N.; Vlajkov, V.; Grahovac, M.; Grahovac, J.; Jokić, A. Taguchi Grey Relational Analysis for Multi-Response Optimization of Bacillus bacteria flocculation recovery from fermented broth by chitosan to enhance biocontrol efficiency. Polymers 2022, 14, 3282. [Google Scholar] [CrossRef]
- Dmitrović, S.; Pajčin, I.; Vlajkov, V.; Grahovac, M.; Jokić, A.; Grahovac, J. Dairy and wine industry effluents as alternative media for the production of Bacillus-based biocontrol agents. Bioengineering 2022, 9, 663. [Google Scholar] [CrossRef]
- Vlajkov, V.; Pajčin, I.; Loc, M.; Budakov, D.; Dodić, J.; Grahovac, M.; Grahovac, J. The effect of cultivation conditions on antifungal and maize seed germination activity of Bacillus-based biocontrol agent. Bioengineering 2022, 9, 797. [Google Scholar] [CrossRef] [PubMed]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing acc deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 2003, 118, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Belakud, B.; Bahadur, V.; Prasad, V.M. Performance of strawberry (Fragaria × Ananassa Duch.) varieties for yield and biochemical parameters. Pharma Innov. J. 2015, 4, 5–8. [Google Scholar]
- El-Kamah, H.; Tawfik, A.; Mahmoud, M.; Abdel-Halim, H. Treatment of high strength wastewater from fruit juice industry using integrated anaerobic/aerobic system. Desalination 2010, 253, 158–163. [Google Scholar] [CrossRef]
- Puchlik, M.; Struk-Sokołowska, J. Comparison of the composition of wastewater from fruit and vegetables as well as dairy industry. E3S Web Conf. 2017, 17. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem. 1996, 44, 701–705. [Google Scholar] [CrossRef]
- Sretenović, M.; Tamaš, N.; Zec, G.; Stojanoski, M.; Tešić, N.; Miletić, N.; Djordjević, B. Productivity, biocontrol and postharvest fruit quality of strawberry cultivar ‘Clery’ using plant growth promoting microorganisms. Cogent Food Agric. 2024, 10, 2310896. [Google Scholar] [CrossRef]
- Markovinović, A.B.; Putnik, P.; Duralija, B.; Krivohlavek, A.; Ivešić, M.; Andačić, I.M.; Bešlić, I.P.; Pavlić, B.; Lorenzo, J.M.; Kovačević, D.B. Chemometric Valorization of Strawberry (Fragaria x Ananassa Duch.) cv ‘Albion’ for the production of functional juice: The impact of physicochemical, toxicological, sensory, and bioactive value. Foods 2022, 11, 640. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A. Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. Eur. Food Res. Technol. 2009, 228, 623–631. [Google Scholar] [CrossRef]
- Garzoli, S.; Cairone, F.; Carradori, S.; Mocan, A.; Menghini, L.; Paolicelli, P.; Ak, G.; Zengin, G.; Cesa, S. Effects of processing on polyphenolic and volatile composition and fruit quality of Clery strawberries. Antioxidants 2020, 9, 632. [Google Scholar] [CrossRef]
- Chen, W.; Xie, C.; He, Q.; Sun, J.; Bai, W. Improvement in color expression and antioxidant activity of strawberry juice fermented with lactic acid bacteria: A phenolic-based research. Food Chem. 2023, 17, 100535. [Google Scholar] [CrossRef] [PubMed]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Chaves, V.C.; Calvete, E.; Reginatto, F.H. Quality properties and antioxidant activity of seven strawberry (Fragaria × ananassa Duch) cultivars. Sci. Hortic. 2017, 225, 293–298. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD–ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 2010, 23, 545–553. [Google Scholar] [CrossRef]
- Poblete, R.; Cortés, E.; Pérez, N.; Valdivia, M.; Maldonado, M.I. Removal of organic matter from wastewater coming from fruit juice production using solar photo-fenton. Process Int. J. Chem. React. Eng. 2021, 19, 809–815. [Google Scholar] [CrossRef]
- Cao, X.; Bi, X.; Huang, W.; Wu, J.; Hu, X.; Liao, X. Changes of quality of high hydrostatic pressure processed cloudy and clear strawberry juices during storage. Innov. Food Sci. Emerg. Technol. 2012, 16, 181–190. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. How to Express the antioxidant properties of substances properly? Chem. Pap. 2021, 75, 6157–6167. [Google Scholar] [CrossRef]
- Hwang, S.J.; Lee, J.H. Comparison of antioxidant activities expressed as equivalents of standard antioxidant. Food Sci. Technol. 2023, 43, e121522. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Selby, C.; Carmichael, E.; McRoberts, C.; Rao, J.R.; Ambrosino, P.; Chiurazzi, M.; Pucci, M.; Martin, T. Physicochemical analyses of plant biostimulant formulations and characterisation of commercial products by instrumental techniques. Chem. Biol. Technol. Agric. 2016, 3, 1–17. [Google Scholar] [CrossRef]
- Antón-Herrero, R.; García-Delgado, C.; Antón-Herrero, G.; Mayans, B.; Delgado-Moreno, L.; Eymar, E. Design of a Hydroponic Test to Evaluate the biostimulant potential of new organic and organomineral products. Sci. Hortic. 2023, 310, 111753. [Google Scholar] [CrossRef]
- Güven, H.M.; Ateş, H. A holistic approach to the recovery of valuable substances from the treatment sludge formed from chemical precipitation of fruit processing industry wastewater. Sci. Total Environ. 2024, 917, 170372. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, H.M.M.; de S. Varize, C.; Valença, C.A.S.; Dossi, F.C.A.; de Aragão Batista, M.V.; Fernandes, R.P.M.; Severino, P.; Souto, E.B.; Dolabella, S.S.; da C. Mendonça, M.; et al. Use of agro-industrial bio-waste for the growth and production of a previously isolated Bacillus thuringiensis strain. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 5. [Google Scholar] [CrossRef]
- Vaishnav, A.; Upadhayay, K.; Tipre, D.; Dave, S. Utilization of mixed fruit waste for exopolysaccharide production by Bacillus species sra4: Medium formulation and its optimization. 3 Biotech 2020, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Gugel, I.; Vahidinasab, M.; Benatto Perino, E.H.; Hiller, E.; Marchetti, F.; Costa, S.; Pfannstiel, J.; Konnerth, P.; Vertuani, S.; Manfredini, S.; et al. Fed-batch bioreactor cultivation of bacillus subtilis using vegetable juice as an alternative carbon source for lipopeptides production: A shift towards a circular bioeconomy. Fermentation 2024, 10, 323. [Google Scholar] [CrossRef]
- Sondhi, S.; Saini, K. Response Surface Based Optimization of Laccase Production from Bacillus Sp. MSK-01 Using Fruit Juice Waste as an Effective Substrate. Heliyon 2019, 5, e01718. [Google Scholar] [CrossRef]
- Mechery, J.; Kumar, C.S.P.; Ambily, V.; Varghese, A.; Sylas, V.P. Dark fermentation of pretreated hydrolysates of pineapple fruit waste for the production of biohydrogen using bacteria isolated from wastewater sources. Environ. Technol. 2024, 45, 2067–2075. [Google Scholar] [CrossRef]
- Cabra Cendales, T.; Rodríguez González, C.A.; Villota Cuásquer, C.P.; Tapasco Alzate, O.A.; Hernández Rodríguez, A. Efecto de Bacillus sobre la germinación y crecimiento de plántulas de tomate (Solanum lycopersicum L.). Acta Biol. Colomb. 2017, 22, 37–44. [Google Scholar] [CrossRef]
- Kouam, I.D.; Mabah, J.; Germain Ntsoli, P.; Tchamani, L.; Yaouba, A.; Katte, B.; Bitom, D. Growth promotion potential of Bacillus spp. isolates on two tomato (Solanum lycopersicum L.) varieties in the west region of Cameroon. Open Agric. 2023, 8, 20220154. [Google Scholar] [CrossRef]
- Patani, A.; Prajapati, D.; Ali, D.; Kalasariya, H.; Yadav, V.K.; Tank, J.; Bagatharia, S.; Joshi, M.; Patel, A. Evaluation of the growth-inducing efficacy of various Bacillus species on the salt-stressed tomato (Lycopersicon esculentum mill.). Front. Plant Sci. 2023, 14, 1168155. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Dixit, B.; Jat, M.L. Soil enzymes activity: Effect of climate smart agriculture on rhizosphere and bulk soil under cereal based systems of North-West India. Eur. J. Soil Biol. 2021, 103, 103292. [Google Scholar] [CrossRef]
- Qu, Y.; Tang, J.; Liu, B.; Lyu, H.; Duan, Y.; Yang, Y.; Wang, S.; Li, Z. Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil region. Sci. Rep. 2022, 12, 1314. [Google Scholar] [CrossRef] [PubMed]
- Balderas-Ruíz, K.A.; Bustos, P.; Santamaria, R.I.; González, V.; Cristiano-Fajardo, S.A.; Barrera-Ortíz, S.; Mezo-Villalobos, M.; Aranda-Ocampo, S.; Guevara-García, Á.A.; Galindo, E.; et al. Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Express 2020, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Vlajkov, V.; Pajčin, I.; Vučetić, S.; Anđelić, S.; Loc, M.; Grahovac, M.; Grahovac, J. Bacillus-loaded biochar as soil amendment for improved germination of maize seeds. Plants 2023, 12, 1024. [Google Scholar] [CrossRef] [PubMed]
- Widnyana, I.K.; Javandira, C. Activities Pseudomonas spp. and Bacillus sp. to stimulate germination and seedling growth of tomato plants. Agric. Agric. Sci. Procedia 2016, 9, 419–423. [Google Scholar] [CrossRef]
- Sarti, G.C.; Galelli, M.E.; Cristóbal-Miguez, J.A.E.; Cárdenas-Aguiar, E.; Chudil, H.D.; García, A.R.; Paz-González, A. Inoculation with biofilm of Bacillus subtilis is a safe and sustainable alternative to promote tomato (Solanum lycopersicum) growth. Environ. 2024, 11, 54. [Google Scholar] [CrossRef]
- Samaras, A.; Roumeliotis, E.; Ntasiou, P.; Karaoglanidis, G. Bacillus subtilis Mbi600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants 2021, 10, 1113. [Google Scholar] [CrossRef]
- Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 2023, 12, 100733. [Google Scholar] [CrossRef]
Parameter | Value (Unit) |
---|---|
Dry weight | 0.65 °Bx |
Sugar content | 5.60 g/L |
Reducing sugar content | 2.70 g/L |
Protein content | 2.02 g/L |
Cellulose content | 1.13 g/L |
pH value | 4.85 |
Compound | Content (µg/g de) a | Content (µg/L SJPW) |
---|---|---|
Organic acids | ||
Quinic acid | 3102 ± 310 | 19,852 ± 1985 |
Phenolic acids | ||
p–Hydroxybenzoic acid | 6.62 ± 0.40 | 42.4 ± 2.54 |
Protocatechuic acid | 25.9 ± 2.07 | 166 ± 13.2 |
p–Coumaric acid | 2.53 ± 0.23 | 16.2 ± 1.46 |
Vanillic acid | <4.90 b | <31.4 |
Gallic acid | 7.11 ± 0.64 | 45.5 ± 4.09 |
Caffeic acid | 4.73 ± 0.33 | 30.3 ± 2.12 |
5–O–caffeoylquinic acid (chlorogenic acid) | 1501 ± 75.07 | 9610 ± 480 |
Flavonoids | ||
Catechin | 28.1 ± 2.81 | 180 ± 18.0 |
Kaempferol–3–O–glucoside | 11.3 ± 0.45 | 72.1 ± 2.88 |
Luteolin–7–O–glucoside | <2.45 | <15.7 |
Quercetin | <19.6 | <125 |
Quercetin–3–O–glucoside + Quercetin–3–O–galactoside | 31.4 ± 1.88 | 201 ± 12.0 |
Rutin | 9.80 ± 0.29 | 62.7 ± 1.88 |
Quercitrin | 1.37 ± 0.08 | 8.77 ± 0.53 |
Chrysoeriol | <0.30 | <1.92 |
Naringenin | 3.94 ± 0.26 | 25.2 ± 1.77 |
Isorhamnetin | <4.90 | <31.4 |
Coumarins | ||
Scopoletin | <1.20 | <7.68 |
Total phenolics c | 4.74 mg/g de | 30.3 mg/L SJPW |
Parameter (Unit) | Value | |
---|---|---|
Total phenolics | 8.52 ± 0.37 * mg GAE/g de | 54.5 ± 2.37 mg GAE/L SJPW |
Total flavonoids | 0.48 ± 0.03 mg QE/g de | 3.04 ± 0.17 mg QE/L SJPW |
DPPH• IC50 | 0.69 ± 0.03 mg/mL | / |
FRAP | 4.43 ± 0.28 mg AAE/g de | 28.4 ± 1.79 mg AAE/L SJPW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilov, I.; Vlajkov, V.; Šumić, Z.; Milić, A.; Horecki, A.T.; Dujković, T.; Živanović, N.; Simin, N.; Lesjak, M.; Grahovac, J. Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production. Foods 2024, 13, 3224. https://doi.org/10.3390/foods13203224
Danilov I, Vlajkov V, Šumić Z, Milić A, Horecki AT, Dujković T, Živanović N, Simin N, Lesjak M, Grahovac J. Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production. Foods. 2024; 13(20):3224. https://doi.org/10.3390/foods13203224
Chicago/Turabian StyleDanilov, Ivana, Vanja Vlajkov, Zdravko Šumić, Anita Milić, Aleksandra Tepić Horecki, Tatjana Dujković, Nemanja Živanović, Nataša Simin, Marija Lesjak, and Jovana Grahovac. 2024. "Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production" Foods 13, no. 20: 3224. https://doi.org/10.3390/foods13203224
APA StyleDanilov, I., Vlajkov, V., Šumić, Z., Milić, A., Horecki, A. T., Dujković, T., Živanović, N., Simin, N., Lesjak, M., & Grahovac, J. (2024). Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production. Foods, 13(20), 3224. https://doi.org/10.3390/foods13203224