Exploring the Multifaceted Biological Activities of Anthocyanins Isolated from Two Andean Berries
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Plant Material
2.3. Anthocyanin Extraction and Characterization
2.4. Spectrophotometric Determination of Anthocyanin
2.5. HPLC-DAD Analysis of Anthocyanins
2.6. Antimicrobial Activity Assay
2.7. Antioxidant Activity
2.8. Antibiofilm Activity
2.9. Antitumoral Activity Assay
2.10. Anti-Inflammatory Activity
2.11. Hemolytic Activity Assay
3. Results
3.1. Chemical Characterization
Peak ID | RT (min) | [M − H]− | MS/MS | [M + H]+ | MS/MS | Identification | V. floribundum | R. glaucus | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 1.18 | 191 | 191->111(100), 173(65), 127(20), 85(15) | 193 | 193->147(100), 157(90), 175(25), 165(15) | Quinic acid | 0.03 | 0.003 | [20] |
2 | 3.91 | 221 | 221->185(100), 203(30), 167(25), 95(5) 441->221(100), 185(10) | Quinic acid derivate | 0.63 | 0.004 | [17] | ||
3 | 7.80 | 219 | 219->111(100), 173(95), 157(10),87(5), 191(5) | 221 | 221->203(100), 175(30), 185(10) 203->157(100), 185(45), 175(15) | Quinic acid derivate isomer | 0.06 | 0.35 | [17] |
4 | 10.45 | 177 | 177->131(100), 145(90), 177(40), 117(35), 103(15) | N.I | 0.07 | 0.60 | |||
10.45 | 141 | 141->141(100) | N.I | 0.01 | 0.02 | ||||
10.93 | 465 | 465->303(100) | Delphinidin-3-pyranoside | 0.40 | 0.004 | [21] | |||
5 | 11.55 | 447 | 447->285(100), 245(25), 321(20) 179(10) | 449 | 449->287(100) | Cyanidin-3-pyranoside | 2.85 | 0.10 | [17] |
11.55 | 435 | 435->303(100) | Delphinidin-3-arabinoside | 0.32 | 0.002 | [17] | |||
11.97 | 611 | 611->287(100), 449(15) | Cyanidin-3-pyranoside hexoside | 0.001 | 0.02 | [17] | |||
6 | 12.28 | 417 | 417->285(100), 371(40), 339(15), 299(10) | 419 | 419->287(100) | Cyanidin-3-arabinoside | 2.05 | 0.000 | [17] |
12.27 | 593 | 593->285(100), 299(30), | 595 | 595->287(100), 449(20) | Derivate of cyanidin 3-O-sambubioside | 0.002 | 2.54 | [22] | |
12.33 | 727 | 727->287(100), 581(30), 375(10) | Cy-3-xylosylrutinoside | 0.000 | 0.51 | [22] | |||
12.69 | 433 | 433->271(100), 387(15) | Pelargonidin 3-glucoside | 0.02 | 0.38 | [22] | |||
7 | 13.42 | 13.42 | 155 | 155->109(100), 127(5) | 2.79 | 0.64 | |||
8 | 13.53 | 345, 247 | 345->247(100), 157(10) 247->157(100), 201(20), 229(10), 129(10) | 249 | 249->203(100), 231(10), 175(10) 203->157(100), 185(60), 175(5) | N.I | 6.25 | 13.65 | |
9 | 14.67 | 287 | 287->241(100), 167(90), 185(70), 231(50), 213(45) | Cyanidin | 1.42 | 0.02 | |||
14.73 | 557 | 557->287(100), 243(10) | catechin-(4-8) cyanidin | 0.26 | 0.02 | ||||
10 | 20.48 | 575 | 575->299(100), 271(10) | N.I | 0.10 | 0.07 | |||
20.48 | 277 | 277->203(100), 231(55), 157(5) | N.I | 6.82 | 7.30 |
3.2. Minimum Inhibitory Concentration
3.3. Biofilm Inhibition Assay
3.4. Antioxidant Activity
3.5. Antitumoral Activity
3.6. Anti-Inflamatory Activity
3.7. Hemolytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ponder, A.; Hallmann, E.; Kwolek, M.; Średnicka-Tober, D.; Kazimierczak, R. Genetic Differentiation in Anthocyanin Content among Berry Fruits. Curr. Issues Mol. Biol. 2021, 43, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Giné Bordonaba, J.; Chope, G.A.; Terry, L.A. Maximising blackcurrant anthocyanins: Temporal changes during ripening and storage in different genotypes. J. Berry Res. 2010, 1, 73–80. [Google Scholar] [CrossRef]
- Pérez, B.P.; Endara, A.B.; Garrido, J.A.; Ramírez Cárdenas, L.d.l.Á. Extraction of anthocyanins from Mortiño (Vaccinium floribundum) and determination of their antioxidant capacity. Rev. Fac. Nac. Agron. Medellín 2021, 74, 9453–9460. [Google Scholar] [CrossRef]
- Schreckinger, M.E.; Wang, J.; Yousef, G.; Lila, M.A.; Gonzalez de Mejia, E. Antioxidant capacity and in vitro inhibition of adipogenesis and inflammation by phenolic extracts of Vaccinium floribundum and Aristotelia chilensis. J. Agric. Food Chem. 2010, 58, 8966–8976. [Google Scholar] [CrossRef]
- Chikane, A.; Rakshe, P.; Kumbhar, J.; Gadge, A.; More, S. A review on anthocyanins: Coloured pigments as food, pharmaceutical ingredients and the potential health benefits. Int. J. Sci. Res. Sci. Technol. 2022, 9, 547–550. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Jęcek, M.; Nowak, P.; Zajdel, R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023, 15, 3016. [Google Scholar] [CrossRef]
- Marques-da-Silva, D.; Rodrigues, J.R.; Lagoa, R. Anthocyanins, effects in mitochondria and metabolism. In Mitochondrial Physiology and Vegetal Molecules; Elsevier: Amsterdam, The Netherlands, 2021; pp. 267–300. ISBN 9780128215623. [Google Scholar]
- Yildiz, E.; Guldas, M.; Ellergezen, P.; Acar, A.G.; Gurbuz, O. Obesity-associated Pathways of Anthocyanins. Food Sci. Technol. 2021, 41, 1–13. [Google Scholar] [CrossRef]
- Barani, Y.H.; Zhang, M.; Mujumdar, A.S.; Chang, L. Preservation of color and nutrients in anthocyanin-rich edible flowers: Progress of new extraction and processing techniques. J. Food Process. Preserv. 2022, 46, e16474. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, H.; Shao, S.; Sun, S.; Yang, D.; Lv, S. Anthocyanin: A review of plant sources, extraction, stability, content determination and modifications. Int. J. Food Sci. Technol. 2022, 57, 7573–7591. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Beltrán-Noboa, A.; Proaño-Ojeda, J.; Guevara, M.; Gallo, B.; Berrueta, L.A.; Giampieri, F.; Perez-Castillo, Y.; Battino, M.; Álvarez-Suarez, J.M.; Tejera, E. Metabolomic profile and computational analysis for the identification of the potential anti-inflammatory mechanisms of action of the traditional medicinal plants Ocimum basilicum and Ocimum tenuiflorum. Food Chem. Toxicol. 2022, 164, 113039. [Google Scholar] [CrossRef]
- CLSI. Dilution AST for Aerobically Grown Bacteria—CLSI. Available online: https://clsi.org/standards/products/microbiology/documents/m07/ (accessed on 26 May 2022).
- Cadena-Cruz, J.E.; Guamán-Ortiz, L.M.; Romero-Benavides, J.C.; Bailon-Moscoso, N.; Murillo-Sotomayor, K.E.; Ortiz-Guamán, N.V.; Heredia-Moya, J. Synthesis of 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols) and evaluation of their antioxidant and anticancer activities. BMC Chem. 2021, 15, 38. [Google Scholar] [CrossRef]
- Sæbø, I.P.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth, J.A. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914. [Google Scholar] [CrossRef] [PubMed]
- Spinardi, A.; Cola, G.; Gardana, C.S.; Mignani, I. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci. 2019, 10, 1045. [Google Scholar] [CrossRef]
- Guevara-Terán, M.; Padilla-Arias, K.; Beltrán-Novoa, A.; González-Paramás, A.M.; Giampieri, F.; Battino, M.; Vásquez-Castillo, W.; Fernandez-Soto, P.; Tejera, E.; Alvarez-Suarez, J.M. Influence of Altitudes and Development Stages on the Chemical Composition, Antioxidant, and Antimicrobial Capacity of the Wild Andean Blueberry (Vaccinium floribundum Kunth). Molecules 2022, 27, 7525. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Di, Q.-R.; Zhong, L.; Zhou, J.-Z.; Shan, C.-J.; Liu, X.-L.; Ma, A.-M. Enhancement on antioxidant, anti-hyperglycemic and antibacterial activities of blackberry anthocyanins by processes optimization involving extraction and purification. Front. Nutr. 2022, 9, 1007691. [Google Scholar] [CrossRef]
- Liu, H.; Wu, H.; Wang, Y.; Wang, F.; Liu, X.; Zhou, J. Enhancement on antioxidant and antibacterial activities of Brightwell blueberry by extraction and purification. Appl. Biol. Chem. 2021, 64, 78. [Google Scholar] [CrossRef]
- Aita, S.; Capriotti, A.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.; Piovesana, S.; Laganà, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
- Stein-Chisholm, R.; Beaulieu, J.; Grimm, C.; Lloyd, S. LC–MS/MS and UPLC–UV Evaluation of Anthocyanins and Anthocyanidins during Rabbiteye Blueberry Juice Processing. Beverages 2017, 3, 56. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; García-Estévez, I.; Rivas-Gonzalo, J.C.; Rodríguez de la Cruz, D.; Escribano-Bailón, M.T. Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L. Differentiation between Populus nigra, Populus alba and Populus tremula. Phytochemistry 2016, 128, 35–49. [Google Scholar] [CrossRef]
- Llivisaca, S.; Manzano, P.; Ruales, J.; Flores, J.; Mendoza, J.; Peralta, E.; Cevallos-Cevallos, J.M. Chemical, antimicrobial, and molecular characterization of mortiño (Vaccinium floribundum Kunth) fruits and leaves. Food Sci. Nutr. 2018, 6, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Garzón, G.A.; Soto, C.Y.; López-R, M.; Riedl, K.M.; Browmiller, C.R.; Howard, L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon 2020, 6, e03845. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Urbonaviciene, D.; Bobinaite, R.; Viskelis, P.; Bobinas, C.; Petruskevicius, A.; Klavins, L.; Viskelis, J. Geographic Variability of Biologically Active Compounds, Antioxidant Activity and Physico-Chemical Properties in Wild Bilberries (Vaccinium myrtillus L.). Antioxidants 2022, 11, 588. [Google Scholar] [CrossRef]
- Vg, M.K.; Murukan, G.; Aswathy, J.; Lawarence, B.; Murugan, K. Microbicidal potentiality of purified anthocyanin from in vitro culture of clerodendron infortunatum L. against selected pathogens. Int. J. Pharm. Pharm. Sci. 2018, 10, 68. [Google Scholar] [CrossRef]
- Sharma, N.; Tiwari, V.; Vats, S.; Kumari, A.; Chunduri, V.; Kaur, S.; Kapoor, P.; Garg, M. Evaluation of Anthocyanin Content, Antioxidant Potential and Antimicrobial Activity of Black, Purple and Blue Colored Wheat Flour and Wheat-Grass Juice against Common Human Pathogens. Molecules 2020, 25, 5785. [Google Scholar] [CrossRef] [PubMed]
- LaPlante, K.L.; Sarkisian, S.A.; Woodmansee, S.; Rowley, D.C.; Seeram, N.P. Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species. Phytother. Res. 2012, 26, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Costa, E.M.; Mendes, M.; Morais, R.M.; Calhau, C.; Pintado, M.M. Antimicrobial, antiadhesive and antibiofilm activity of an ethanolic, anthocyanin-rich blueberry extract purified by solid phase extraction. J. Appl. Microbiol. 2016, 121, 693–703. [Google Scholar] [CrossRef]
- Gao, Z. Extraction, separation, and purification of blueberry anthocyanin using ethyl alcohol. Kem. Ind. 2017, 66, 655–659. [Google Scholar] [CrossRef]
- Cairone, F.; Simonetti, G.; Orekhova, A.; Casadei, M.A.; Zengin, G.; Cesa, S. Health Potential of Clery Strawberries: Enzymatic Inhibition and Anti-Candida Activity Evaluation. Molecules 2021, 26, 1731. [Google Scholar] [CrossRef]
- Salaheen, S.; Peng, M.; Joo, J.; Teramoto, H.; Biswas, D. Eradication and Sensitization of Methicillin Resistant Staphylococcus aureus to Methicillin with Bioactive Extracts of Berry Pomace. Front. Microbiol. 2017, 8, 253. [Google Scholar] [CrossRef]
- Quave, C.L.; Estévez-Carmona, M.; Compadre, C.M.; Hobby, G.; Hendrickson, H.; Beenken, K.E.; Smeltzer, M.S. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS ONE 2012, 7, e28737. [Google Scholar] [CrossRef]
- Alarcón-Barrera, K.S.; Armijos-Montesinos, D.S.; García-Tenesaca, M.; Iturralde, G.; Jaramilo-Vivanco, T.; Granda-Albuja, M.G.; Giampieri, F.; Alvarez-Suarez, J.M. Wild Andean blackberry (Rubus glaucus Benth) and Andean blueberry (Vaccinium floribundum Kunth) from the Highlands of Ecuador: Nutritional composition and protective effect on human dermal fibroblasts against cytotoxic oxidative damage. J. Berry Res. 2018, 8, 223–236. [Google Scholar] [CrossRef]
- Prencipe, F.P.; Bruni, R.; Guerrini, A.; Rossi, D.; Benvenuti, S.; Pellati, F. Metabolite profiling of polyphenols in Vaccinium berries and determination of their chemopreventive properties. J. Pharm. Biomed. Anal. 2014, 89, 257–267. [Google Scholar] [CrossRef]
- Samaniego, I.; Brito, B.; Viera, W.; Cabrera, A.; Llerena, W.; Kannangara, T.; Vilcacundo, R.; Angós, I.; Carrillo, W. Influence of the Maturity Stage on the Phytochemical Composition and the Antioxidant Activity of Four Andean Blackberry Cultivars (Rubus glaucus Benth) from Ecuador. Plants 2020, 9, 1027. [Google Scholar] [CrossRef]
- Vasco, C.; Riihinen, K.; Ruales, J.; Kamal-Eldin, A. Chemical composition and phenolic compound profile of mortiño (Vaccinium floribundum Kunth). J. Agric. Food Chem. 2009, 57, 8274–8281. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martínez, L.; Mut-Salud, N.; Ruiz-García, J.A.; Falcón-Piñeiro, A.; Maijó-Ferré, M.; Baños, A.; De la Torre-Ramírez, J.M.; Guillamón, E.; Verardo, V.; Gómez-Caravaca, A.M. Phytochemicals Determination, and Antioxidant, Antimicrobial, Anti-Inflammatory and Anticancer Activities of Blackberry Fruits. Foods 2023, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Lamdan, H.; Garcia-Lazaro, R.S.; Lorenzo, N.; Caligiuri, L.G.; Alonso, D.F.; Farina, H.G. Anti-proliferative effects of a blueberry extract on a panel of tumor cell lines of different origin. Exp. Oncol. 2020, 42, 101–108. [Google Scholar] [CrossRef]
- Tatar, M.; Varedi, M.; Naghibalhossaini, F. Epigenetic effects of blackberry extract on human colorectal cancer cells. Nutr. Cancer 2022, 74, 1446–1456. [Google Scholar] [CrossRef]
- Jazić, M.; Kukrić, Z.; Vulić, J.; Četojević-Simin, D. Polyphenolic composition, antioxidant and antiproliferative effects of wild and cultivated blackberries (Rubus fruticosus L.) pomace. Int. J. Food Sci. Technol. 2019, 54, 194–201. [Google Scholar] [CrossRef]
- Lin, B.-W.; Gong, C.-C.; Song, H.-F.; Cui, Y.-Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, Y.; Tao, X.; Zhang, M.; Sun, A. Protective effect of blueberry anthocyanins in a CCL4-induced liver cell model. LWT—Food Sci. Technol. 2015, 60, 1105–1112. [Google Scholar] [CrossRef]
- Gu, I.; Brownmiller, C.; Stebbins, N.B.; Mauromoustakos, A.; Howard, L.; Lee, S.-O. Berry Phenolic and Volatile Extracts Inhibit Pro-Inflammatory Cytokine Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB Signaling Pathway. Antioxidants 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yan, Z.; Li, D.; Ma, Y.; Zhou, J.; Sui, Z. Antioxidant and Anti-Inflammatory Effects of Blueberry Anthocyanins on High Glucose-Induced Human Retinal Capillary Endothelial Cells. Oxid. Med. Cell. Longev. 2018, 2018, 1862462. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.S.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int. J. Mol. Sci. 2023, 24, 12024. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P. Berry fruits for cancer prevention: Current status and future prospects. J. Agric. Food Chem. 2008, 56, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
Strain | R. glaucus | V. floribundum | |
---|---|---|---|
MIC mg/mL | MIC mg/mL | ||
Gram-positive | Staphylococcus aureus ATCC 25923 | 1.2 | 2.1 |
Enterococcus faecalis ATCC 29212 | 1.0 | 2.5 | |
Listeria monocytogenes ATCC 13932 | 1.2 | 2.2 | |
Gram-negative | Pseudomonas aeruginosa ATCC 27853 | 8 | 12 |
Salmonella typhimurium ATCC 14028 | 10 | 16 | |
Burkholderia cepacea ATCC 25416 | 10 | 14 | |
Escherichia coli ATCC 25922 | 12 | 18 | |
Yeast | Candida krusei ATCC 14243 | 110 | 150 |
Candida glabrata ATCC 66032 | 150 | 180 | |
Candida tropicalis ATCC 1369 | 120 | 100 | |
Candida albicans ATCC 10231 | 100 | 100 |
Strains | R. glaucus Extract | V. floribundum Extract | ||
---|---|---|---|---|
MBIC50 (mg/mL) | Inhibition Percentage | MBIC50 (mg/mL) | Inhibition Percentage | |
Staphylococcus aureus ATCC 25923 | 1 | 72 ± 6.6% | 0.5 | 64 ± 7.1% |
Enterococcus faecalis ATCC 29212 | NA | NA | 5 | 63 ± 12.2% |
Listeria monocytogenes ATCC 13932 | 5 | 80 ± 16.7% | 1 | 63 ± 5.7% |
Pseudomonas aeruginosa ATCC 9027 | 10 | 96 ± 2.0% | NA | NA |
Burkholderia cepacia ATCC 25416 | 5 | 91 ± 9.1% | 20 | 96 ± 3.5% |
Candida tropicalis ATCC 13803 | NA | NA | 5 | 64 ± 12.9% |
IC50 | Rubus glaucus | Vaccinium floribundum | Control |
---|---|---|---|
µg/mL | 24.13 ± 3.73 | 21.77 ± 3.15 | 5.47 ± 0.30 |
Cell Lines | R. glaucus (mg/mL) | V. floribundum (mg/mL) |
---|---|---|
MDA-MB-231 | 3.69 ± 0.60 | 2.31 ± 0.23 |
MCF-7 | 3.33 ± 0.76 | >5.00 |
HeLa | 1.40 ± 0.31 | >5.00 |
THJ29T | 2.38 ± 0.75 | >5.00 |
NIH3T3 | 2.22 ± 0.20 | 2.60 ± 0.90 |
% Hemolysis | |
---|---|
C− | 0 ± 0.3 |
C+ | 100.0 ± 1.4 |
Rg 10 mg/mL | 6.3 ± 0.5 |
Rg 50 mg/mL | 10.2 ± 3 |
Vf 10 mg/mL | 0 ± 1.3 |
Vf 50 mg/mL | 1.3 ± 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Zuñiga-Miranda, J.; Mayorga-Ramos, A.; Tejera, E.; Guamán, L.P. Exploring the Multifaceted Biological Activities of Anthocyanins Isolated from Two Andean Berries. Foods 2024, 13, 2625. https://doi.org/10.3390/foods13162625
Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Zuñiga-Miranda J, Mayorga-Ramos A, Tejera E, Guamán LP. Exploring the Multifaceted Biological Activities of Anthocyanins Isolated from Two Andean Berries. Foods. 2024; 13(16):2625. https://doi.org/10.3390/foods13162625
Chicago/Turabian StyleBarba-Ostria, Carlos, Saskya E. Carrera-Pacheco, Rebeca Gonzalez-Pastor, Johana Zuñiga-Miranda, Arianna Mayorga-Ramos, Eduardo Tejera, and Linda P. Guamán. 2024. "Exploring the Multifaceted Biological Activities of Anthocyanins Isolated from Two Andean Berries" Foods 13, no. 16: 2625. https://doi.org/10.3390/foods13162625
APA StyleBarba-Ostria, C., Carrera-Pacheco, S. E., Gonzalez-Pastor, R., Zuñiga-Miranda, J., Mayorga-Ramos, A., Tejera, E., & Guamán, L. P. (2024). Exploring the Multifaceted Biological Activities of Anthocyanins Isolated from Two Andean Berries. Foods, 13(16), 2625. https://doi.org/10.3390/foods13162625