Foliar Application of CaCO3-Rich Industrial Residues on ‘Shiraz’ Vines Improves the Composition of Phenolic Compounds in Grapes and Aged Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site of Study and Treatment
2.2. Yield and Basic Properties of Fruit
2.3. Winemaking and Evaluation of Wine Quality
2.4. Analysis of Phenolic Compounds
2.5. Antioxidant Capacity of Grapes and Wine
2.6. Statistical Analysis
3. Results
3.1. Yield and Calcium Content in Fruit
3.2. General Properties of Grapes and Wines
3.3. Effect of Foliar CaCO3 on the Phenolic Content and Antioxidant Capacity in Grapes and Wine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flamini, R.; Mattivi, F.; Rosso, M.D.; Arapitsas, P.; Bavaresco, L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes, and flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef] [PubMed]
- Lacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin, and resveratrol in red grape: Content, in vitro antioxidant activity, and interactions. J. Food Compost. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Intrigliolo, D.S.; Almajano, M.P.; Rubio-Bretón, P.; Garde-Cerdán, T. Effects of water deficit irrigation on phenolic composition and antioxidant activity of Monastrell grapes under semiarid conditions. Antioxidants 2021, 10, 1301. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, K.; Upadhyay, N.; Kumar, N.; Yadav, G.; Singh, J.; Mishra, R.K.; Kumar, V.; Verma, R.; Upadhyay, R.G.; Pandey, M.; et al. Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Front. Plant Sci. 2017, 8, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.V.; Webb, L.B. Climate change, viticulture, and wine: Challenges and opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- Alonso, R.; Berli, F.J.; Fontana, A.; Piccoli, P.; Bottini, R. Abscisic acid’s role in the modulation of compounds that contribute to wine quality. Plants 2021, 10, 938. [Google Scholar] [CrossRef]
- Alonso, R.; Berli, F.J.; Fontana, A.; Piccoli, P.; Bottini, R. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-b, water deficit, and sprayed abscisic acid. Plant Physiol. Biochem. 2016, 109, 84–90. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Zhang, W.; Lu, J. Effects of exogenous abscisic acid on phenolic characteristics of red Vitis vinifera grapes and wines. Food Sci. Biotechnol. 2016, 25, 361–370. [Google Scholar] [CrossRef]
- Koyama, R.; Marinho de Assis, A.; Yamamoto, L.Y.; Borges, W.F.; de Sá Borges, R.; Prudencio, S.H.; Roberto, S.R. Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from ‘Isabel’ grapes (Vitis labrusca L.). HortScience 2014, 49, 460–464. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.; Billet, K.; García, A.; Lanoue, A.; Gerós, H. Exogenous calcium grape berry metabolism towards the production of more stilbenoids and less anthocyanins. Food Chem. 2020, 313, 126123. [Google Scholar] [CrossRef]
- Xiong, T.; Tan, Q.; Li, S.; Mazars, C.H.; Galaud, J.P.; Zhu, X. Interactions between calcium and ABA signaling pathways in the regulation of fruit ripening. J. Plant Physiol. 2021, 256, 153309. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Long, L.E. The effect of postharvest calcium application in hydro-cooling water on tissue calcium content, biochemical changes, and quality attributes of sweet cherry fruit. Food Chem. 2014, 160, 23–30. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, M.; Wang, M.; Xu, Y.; Chen, W.; Yang, G. Transcriptome analysis of calcium-induced accumulation of anthocyanins in grape skin. Sci. Hortic. 2020, 260, 108871. [Google Scholar] [CrossRef]
- Maya-Meraz, I.O.; Pérez-Leal, R.; Ornelas-Paz, J.J.; Jacobo-Cuéllar, J.L.; Rodríguez-Roque, M.J.; Yañez-Muñoz, R.M.; Cabello-Pasini, A. Effect of calcium carbonate residues from cement industries on the phenolic composition and yield of Shiraz grapes. S. Afr. J. Enol. Vitic. 2020, 41, 33–43. [Google Scholar] [CrossRef]
- Martins, V.; García, A.; Alhinho, A.T.; Costa, P.; Lanceros-Médez, S.; Costa, M.M.R.; Gerós., H. Vineyard calcium sprays induce changes in grape berry skin, firmness, cell wall composition, and expression of cell wall-related genes. Plant Physiol. Biochem. 2020, 150, 49–55. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, Y.; Liu, D.; Li, Z.; Zhang, X.X.; Li, J.M.; Huang, J.H.; Wang, J.; Pan, Q.H. Evolution of phenolic compounds and sensory in bottled red wines and their co-development. Food Chem. 2015, 172, 565–574. [Google Scholar] [CrossRef]
- Fernández-Hernández, A.; Mateos, R.; García-Mesa, J.A.; Beltrán, G.; Fernández-Escobar, R. Determination of mineral elements in fresh olive fruits by flame atomic spectrometry. Span. J. Agric. Res. 2010, 8, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- International Organization of Vine and Wine. Compendium of International Methods of Analysis of Wines and Musts. Available online: https://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts (accessed on 21 January 2018).
- Ornelas-Paz, J.J.; Meza, M.B.; Obenland, D.; Rodrígez-Friscia, K.; Jain, A.; Thornton, S.; Prakash, A. Effect of phytosanitary irradiation on the postharvest quality of seedless kishu mandarins (Citrus kinokuni mukaku kishu). Food Chem. 2017, 230, 712–720. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, N.A.; Shafique, M.; Ali, I.; Qureshi, A.A.; Hafiz, I. Pre-harvest foliar application of calcium chloride improves berry quality and storage life of table grape cvs. ‘Perlette’ and ‘kings’s ruby’. J. Pure Appl. Agric. 2020, 5, 104–115. Available online: https://jpaa.aiou.edu.pk/wp-content/uploads/2020/07/JPAA_2020_5_2_104-115.pdf (accessed on 10 January 2022).
- Al-Qurashi, A.D.; Awad, A. Effect of pre-harvest calcium chloride and ethanol spray-on quality of ‘El-Bayadi’ table grapes during storage. Vitis 2013, 52, 61–67. Available online: https://www.researchgate.net/profile/Mohamed-Awad-8/publication/260293112_Effect_of_pre-harvest_calcium_chloride_and_ethanol_spray_on_quality_of_’El-Bayadi’_table_grapes_during_storage/links/5bfc7011458515b41d106b6a/Effect-of-pre-harvest-calcium-chloride-and-ethanol-spray-on-quality-of-El-Bayadi-table-grapes-during-storage.pdf (accessed on 11 December 2021).
- Korkmaz, N.; Askin, M.A.; Ercisli, S.; Okatan, V. Foliar application of calcium nitrate. Boric acid and gibberellic acid affect the yield and quality of pomegranate (Punica granatum L.). Acta Sci. Pol. Hortorum Cultus. 2016, 15, 105–112. Available online: http://acikerisim.mu.edu.tr/xmlui/bitstream/handle/20.500.12809/2795/korkmaz.pdf?sequence=1 (accessed on 21 March 2021).
- El-Sayed, M.E.A. Improving fruit quality and marketing of “Crimson Seedless” grape using some preharvest treatments. J. Hortic. Sci. Ornam. Plants 2013, 5, 2018–2226. [Google Scholar]
- Gao, Q.; Xiong, T.; Li, X.; Chen, W.; Zhu, X. Calcium and calcium sensors in fruit development and ripening. Sci. Hort. 2019, 253, 412–421. [Google Scholar] [CrossRef]
- Marusing, D.; Tambesi, S. Abscisic acid mediates drought and salt stress responses in Vitis vinifera a review. Int. J. Mol. Sci. 2020, 21, 8648. [Google Scholar] [CrossRef]
- Quiroga, A.M.; Berli, F.J.; Moreno, D.; Cavagnaro, J.B.; Bottini, R. Abscisic acid sprays significantly increase yield per plant in vineyard-grown wine grape (Vitis vinifera L.) cv. Cabernet Sauvignon through increased berry set with no negative effects on anthocyanin content and total polyphenol index of both juice and wine. J. Plant Growth Regul. 2009, 28, 28–35. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Borja, E.; Santamaría, P.; Garde-Cerdán, T. Improvement of grape and wine phenolic content by foliar application to grapevine of three elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chem. 2016, 201, 213–221. [Google Scholar] [CrossRef]
- Lamikanra, O. Changes in organic acid composition during fermentation and aging of noble Muscadine wine. J. Agric. Food Chem. 1997, 45, 935–937. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.J.; Quintana-Gallegos, B.M.; Escalante-Minakata, P.; Reyes-Hernández, J.; Pérez-Martínez, J.D.; Ríos-Velasco, C.; Ruiz-Cruz, S. Relationship between the firmness of Golden delicious apples and the physicochemical characteristics of the fruits and their pectin during development and ripening. J. Food Sci. Technol. 2018, 55, 33–41. [Google Scholar] [CrossRef]
- Raese, J.T.; Drake, S.R. Effect of calcium sprays, time of harvest, cold storage, and ripeness on fruit quality of ‘Anjou’ pears. J. Plant Nutr. 2000, 23, 843–853. [Google Scholar] [CrossRef]
- Olivares, D.; Contreras, C.; Muñoz, V.; Rivera, S.; González-Agüero, M.; Retamales, J.; Defilippi, B.G. Relationship among color development, anthocyanin, and pigment-related gene expression in ‘Crimson Seedless’ grapes treated with abscisic acids and sucrose. Plant Physiol. Biochem. 2017, 115, 286–297. [Google Scholar] [CrossRef]
- Luan, L.Y.; Zhang, Z.W.; Xi, Z.M.; Huo, S.S.; Ma, L.N. Comparison of the effects of exogenous abscisic acid on the phenolic composition of ‘Yan’ and ‘Cabernet Sauvignon’ (Vitis vinifera L.) wines. Eur. Food Res. Technol. 2014, 239, 203–213. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Santamaría, P.; Garde-Cerdán, T. Methyl jasmonate treatment to increase grape and wine phenolic content in Tempranillo and Graciano varieties during two growing seasons. Sci. Hortic. 2018, 240, 378–386. [Google Scholar] [CrossRef]
- Xu, W.; Peng, H.; Yang, T.; Whitaker, B.; Huang, L.; Sun, J.; Chen, P. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant Physiol. Biochem. 2014, 82, 289–298. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Liu, G.; Edwards, E.J.; Duan, W.; Li, S.; Wang, L. The synthesis and accumulation of resveratrol are associated with veraison and abscisic acid concentration in Beihong (Vitis vinifera × Vitis amurensis) berry skin. Front. Plant Sci. 2016, 7, 1605. [Google Scholar] [CrossRef] [Green Version]
- He, F.; He, J.J.; Pan, Q.H.; Duan, C.Q. Mass-spectrometry evidence confirming the presence of pelargonidin-3-O-glucoside in the berry skins of Cabernet Sauvignon and Pinot Noir (Vitis vinifera L.). Aust. J. Grape Wine Res. 2010, 16, 464–468. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Zhang, Y.; Zhang, J.; Niu, S.; Wang, X.; Li, W.; Zhang, J.; Yao, Y. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytol. 2021, 231, 1105–1122. [Google Scholar] [CrossRef]
- Yang, F.; Dong, F.S.; Hu, F.H.; Liu, Y.W.; Chai, J.F.; Zhao, H.; Lv, M.Y.; Zhou, S. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genetics. 2020, 21, 105. [Google Scholar] [CrossRef]
- Allan, A.C.; Hellens, R.P.; Laing, W.A. MYB transcription factors that colour our fruit. Trends Plant Sci. 2008, 13, 99–102. [Google Scholar] [CrossRef]
- Reddy, A.S.N.; Ali, G.S.; Celesnik, H.; Day, I.S. Coping with Stresses: Roles of calcium- and calcium/Calmodulin-regulated gene expression. Plant Cell. 2011, 23, 2010–2032. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Lin-Wang, K.; Wang, F.; Espley, R.V.; Ren, F.; Zhao, J.; Ogutu, C.; He, H.; Jiang, Q.; Allan, A.C.; et al. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytol. 2019, 221, 1919–1934. [Google Scholar] [CrossRef] [Green Version]
- Gil-Muñoz, R.; Bautista-Ortín, A.B.; Ruíz-García, Y.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Improving phenolic and chromatic characteristics of Monastrell, Merlot, and Syrah wines by using methyl jasmonate and benzothiadiazole. Oeno One 2017, 51, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Favre, G.; González-Neves, G.; Piccardo, D.; Gómez-Alonso, S.; Pérez-Navarro, J.; Hermosín-Gutiérrez, I. New acylated flavonols identified in Vitis vinifera grapes and wines. Food Res. Int. 2018, 112, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Downey, M.O.; Harvey, J.; Robinson, S. Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera). Aust. J. Grape Wine Res. 2003, 9, 110–121. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, Y.; Cheng, L.; Zhong, G.Y. Characterization of polyphenolic metabolites in the seeds of Vitis vinifera germplasm. J. Agric. Food Chem. 2012, 60, 1291–1299. [Google Scholar] [CrossRef]
- Darias-Martín, J.; Martín-Luis, B.; Carrillo-López, M.; Lamuela-Raventos, R.; Días-Romero, C.; Boulton, R. Effect of caffeic acid on the color of red wine. J. Agric. Food Chem. 2002, 50, 2062–2067. [Google Scholar] [CrossRef]
Phenological Stage | Month | Degree Days (°C) | Average Minimum Temperatures (°C) | Average Maximum Temperatures (°C) | Accumulated Precipitation (mm) |
---|---|---|---|---|---|
Dormancy | February | 108.02 | 6.46 | 19.81 | 0.40 |
Bud swelling | March | 152.44 | 9.67 | 23.05 | 0.60 |
Budburst | March | 178.80 | 5.86 | 24.68 | 0.30 |
Flowering | April | 410.16 | 11.56 | 25.68 | 1.90 |
Fruit set | May | 473.99 | 10.90 | 25.64 | 0.0 |
1 Veraison (90%) | July | 1096.63 | 13.42 | 26.76 | 157.80 |
Ripe grapes for harvest | August | 1445.10 | 13.45 | 24.26 | 361.6 |
Leaves fall | October | 1784.27 | 8.32 | 21.05 | 387.0 |
Attribute | Grapes | |
---|---|---|
CaCO3 | Control | |
Cluster weight (Kg) | 0.23 ± 0.01 a | 0.13 ± 0.01 b |
Weight of 100 grapes (g) | 211.71 ± 4.81 a | 144.83 ± 4.81 b |
Skin weight per berry (g) | 0.43 ± 0.01 a | 0.35 ± 0.01 b |
Pulp weight per berry (g) | 0.95 ± 0.01 a | 0.89 ± 0.01 b |
Seed weight per berry (g) | 0.09 ± 0.01 a | 0.10 ± 0.01 a |
Ca content in pulp (mg Kg−1 DW) | 191.01 ± 1.27 a | 184.00 ± 1.27 b |
Ca content in skin (mg Kg−1 DW) | 617.35 ± 5.91 a | 301.19 ± 5.91 b |
Quality Attribute | CaCO3 | Control |
---|---|---|
TSS (°Brix) | 20.15 ± 0.13 a | 20.23 ± 0.13 a |
TA (g L−1 tartaric acid equivalents) | 7.35 ± 0.05 a | 7.35 ± 0.05 a |
pH | 3.30 ± 0.04 a | 3.34 ± 0.04 a |
Moisture (%) | 79.57 ± 0.55 a | 76.04 ± 0.55 b |
Firmness (N) | 2.15 ± 0.08 a | 1.89 ± 0.08 b |
Color | ||
L* | 29.81 ± 0.39 b | 31.11 ± 0.39 a |
a* | 2.77 ± 0.12 a | 2.86 ± 0.12 a |
b* | −0.48 ± 0.06 a | −0.38 ± 0.06 b |
c* | 2.85 ± 0.09 a | 2.93 ± 0.093 a |
h* | 343.13 ± 2.56 a | 344.42 ± 2.56 a |
Quality Attribute | Wines | |
---|---|---|
CaCO3 | Control | |
Alcohol (%, v/v) | 11.83 ± 0.07 a | 11.81 ± 0.07 a |
pH | 3.54 ± 0.03 a | 3.32 ± 0.03 b |
TA (g L−1 tartaric acid equivalents) | 7.48 ± 0.03 b | 7.72 ± 0.03 a |
Color index | 5.99 ± 0.01 a | 4.25 ± 0.01 b |
Tonality | 0.0085 ± 0.00 a | 0.0080 ± 0.00 b |
Density | 0.98 ± 0.021 a | 0.98 ± 0.021 a |
Phenolic Compound Group | Phenolic Compound | CaCO3 | Control |
---|---|---|---|
Phenolic acids | Gallic acid | 556.39 ± 38.61 a | 598.19 ± 38.61 a |
Caftaric acid | 53.11 ± 2.45 a | 27.99 ± 2.45 b | |
Protocatechuic acid | 6.45 ± 0.50 a | 4.34 ± 0.50 b | |
Trans-cinnamic acid | 19.15 ± 0.25 a | 1.56 ± 0.25 b | |
Flavan-3-ols | Procyanidin B1 | 88.84 ± 4.27 a | 34.87 ± 4.27 b |
Procyanidin B2 | 92.06 ± 3.68 a | 52.45 ± 3.68 b | |
Epicatechin | 282.19 ± 20.05 a | 148.69 ± 20.05 b | |
Catechin | 63.65 ± 8.51 a | 25.68 ± 8.51 b | |
Anthocyanins | Malvidin-3-O-glucoside | 688.67 ± 15.49 a | 242.21 ± 15.49 b |
Cyanidin-3-O-galactoside | 124.19 ± 9.52 a | 42.56 ± 9.52 b | |
Cyanidin-3-O-glucoside | 63.92 ± 4.97 a | 30.33 ± 4.97 b | |
Pelargonidin-3-O-glucoside | 50.14 ± 2.38 a | 23.94 ± 2.38 b | |
Peonidin-3-O-glucoside | ND | ND | |
Stilbenes | Trans-Resveratrol | 8.95 ± 0.69 a | 6.38 ± 0.69 b |
Total phenolic compounds(mg GAE Kg−1 FW) | 4.03 ± 0.63 a | 1.66 ± 0.63 b | |
Antioxidant capacity (% inhibition DPPH) | 88.06 ± 1.36 a | 83.04 ± 1.36 b |
Phenolic Compound Group | Phenolic Compound | CaCO3 | Control |
---|---|---|---|
Phenolic acids | Gallic acid | 28.44 ± 0.93 b | 42.63 ± 0.93 a |
Caftaric acid | 16.44 ± 0.81 a | 4.97 ± 0.81 b | |
Caffeic acid | 14.06 ± 0.16 a | 12.63 ± 0.16 b | |
Chlorogenic acid | 0.71 ± 0.10 b | 1.13 ± 0.10 a | |
Syringic acid | 4.89 ± 1.31 b | 11.59 ± 1.31 a | |
Flavonols | Quercetin-3-β-glucuronide | 3.02 ± 0.29 a | 2.96 ± 0.29 a |
Quercetin-3-glucoside | 10.79 ± 0.77 a | 10.87 ± 0.77 a | |
Quercetin | 19.83 ± 0.54 a | 5.03 ± 0.54 b | |
Myricetin | 4.90 ± 1.25 a | 6.71 ± 1.25 a | |
Kaempferol | 3.98 ± 0.35 a | 4.50 ± 0.35 a | |
Isorhamnetin | 4.43 ± 0.27 a | 4.13 ± 0.27 a | |
Flavan-3-ols | Procyanidin B1 | 26.37 ± 1.67 a | 24.15 ± 1.67 a |
Procyanidin B2 | 67.30 ± 2.93 b | 86.91 ± 2.93 a | |
Epicatechin | 30.06 ± 0.91 a | 23.12 ± 0.91 b | |
Catechin | 16.33 ± 0.78 a | 4.41 ± 0.78 b | |
Anthocyanins | Malvidin-3-O-glucoside | 246.42 ± 1.18 a | 211.06 ± 1.18 b |
Cyanidin-3-O-galactoside | ND | ND | |
Cyanidin-3-O-glucoside | 104.98 ± 1.91 b | 112.34 ± 1.91 a | |
Pelargonidin-3-O-glucoside | 17.92 ± 1.68 a | 9.56 ± 1.68 b | |
Peonidin-3-O-glucoside | ND | ND | |
Stilbene | Trans-Resveratrol | 8.74 ± 0.07 a | 3.69 ± 0.07 b |
Total phenolic compounds (mg GAE L−1) | 3.17 ± 0.09 a | 2.71 ± 0.0.09 b | |
Antioxidant capacity (% inhibition DPPH) | 64.25 ± 0.77 a | 57.32 ± 0.77 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maya-Meraz, I.O.; Ornelas-Paz, J.d.J.; Pérez-Martínez, J.D.; Gardea-Béjar, A.A.; Rios-Velasco, C.; Ruiz-Cruz, S.; Ornelas-Paz, J.; Pérez-Leal, R.; Virgen-Ortiz, J.J. Foliar Application of CaCO3-Rich Industrial Residues on ‘Shiraz’ Vines Improves the Composition of Phenolic Compounds in Grapes and Aged Wine. Foods 2023, 12, 1566. https://doi.org/10.3390/foods12081566
Maya-Meraz IO, Ornelas-Paz JdJ, Pérez-Martínez JD, Gardea-Béjar AA, Rios-Velasco C, Ruiz-Cruz S, Ornelas-Paz J, Pérez-Leal R, Virgen-Ortiz JJ. Foliar Application of CaCO3-Rich Industrial Residues on ‘Shiraz’ Vines Improves the Composition of Phenolic Compounds in Grapes and Aged Wine. Foods. 2023; 12(8):1566. https://doi.org/10.3390/foods12081566
Chicago/Turabian StyleMaya-Meraz, Irma Ofelia, José de Jesús Ornelas-Paz, Jaime David Pérez-Martínez, Alfonso A. Gardea-Béjar, Claudio Rios-Velasco, Saúl Ruiz-Cruz, Juan Ornelas-Paz, Ramona Pérez-Leal, and José Juan Virgen-Ortiz. 2023. "Foliar Application of CaCO3-Rich Industrial Residues on ‘Shiraz’ Vines Improves the Composition of Phenolic Compounds in Grapes and Aged Wine" Foods 12, no. 8: 1566. https://doi.org/10.3390/foods12081566
APA StyleMaya-Meraz, I. O., Ornelas-Paz, J. d. J., Pérez-Martínez, J. D., Gardea-Béjar, A. A., Rios-Velasco, C., Ruiz-Cruz, S., Ornelas-Paz, J., Pérez-Leal, R., & Virgen-Ortiz, J. J. (2023). Foliar Application of CaCO3-Rich Industrial Residues on ‘Shiraz’ Vines Improves the Composition of Phenolic Compounds in Grapes and Aged Wine. Foods, 12(8), 1566. https://doi.org/10.3390/foods12081566