The Influence of the Apple Vinegar Marination Process on the Technological, Microbiological and Sensory Quality of Organic Smoked Pork Hams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Apple Vinegar
2.1.2. Organic Smoked Pork Hams Production
2.2. Methods
2.2.1. Chemical Composition and NaCl Content
2.2.2. Fatty Acids and Cholesterol Content
2.2.3. Nitrite and Nitrate Content
2.2.4. Water Activity and pH Value
2.2.5. Oxidation-Reduction Potential (ORP), TBARS (Thiobarbituric Acid Reactive Substances) Index
2.2.6. Colour Measurement
2.2.7. Microbiological Analysis
2.2.8. Sensory Analysis
2.2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ousaaid, D.; Laaroussi, H.; Bakour, M.; ElGhouizi, A.; Aboulghazi, A.; Lyoussi, B.; ElArabi, I. Beneficial effects of apple vinegar on hyperglycemia and hyperlipidemia in hypercaloric-fed rats. J. Diabetes Res. 2020, 2020, 9284987. [Google Scholar] [CrossRef]
- Štornik, A.; Skok, B.; Trček, J. Comparison of cultivable acetic acid bacterial microbiota in organic and conventional apple cider vinegar. Food Technol. Biotechnol. 2016, 54, 113–119. [Google Scholar] [CrossRef]
- Antoniewicz, J.; Janda-Milczarek, K. Octy winogronowe-charakterystyka, właściwości oraz bezpieczeństwo stosowania. Med. Ogólna I Nauk. O Zdrowiu 2021, 27, 379–386. [Google Scholar] [CrossRef]
- Ousaaid, D.; Laaroussi, H.; Mechchate, H.; Bakour, M.; El Ghouizi, A.; Mothana, R.A.; Noman, O.; Es-Safi, I.; Lyoussi, B.; El Arabi, I. The nutritional and antioxidant potential of artisanal and industrial apple vinegars and their ability to inhibit key enzymes related to type 2 diabetes in vitro. Molecules 2022, 27, 567. [Google Scholar] [CrossRef] [PubMed]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological processes in fruit vinegar production. Foods 2021, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- Ben Braïek, O.; Smaoui, S. Chemistry, safety, and challenges of the use of organic acids and their derivative salts in meat preservation. J. Food Qual. 2021, 2021, 6653190. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki UK, H.H.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Kara, M.; Assouguem, A.; kamaly OM, A.; Benmessaoud, S.; Imtara, H.; Mechchate, H.; Hano, C.; Zerhouni, A.R.; Bahhou, J. The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples. Molecules 2021, 26, 5437. [Google Scholar] [CrossRef]
- Ousaaid, D.; Laaroussi, H.; Bakour, M.; Ennaji, H.; Lyoussi, B.; El Arabi, I. Antifungal and antibacterial activities of apple vinegar of different cultivars. Int. J. Microbiol. 2021, 2021, 6087671. [Google Scholar] [CrossRef] [PubMed]
- Gök, V.; Bor, Y. Effect of marination with fruit and vegetable juice on the some quality characteristics of turkey breast meat. Braz. J. Poult. Sci. 2016, 18, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Gómez, I.; Janardhanan, R.; Ibañez, F.C.; Beriain, M.J. The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods 2020, 9, 1416. [Google Scholar] [CrossRef] [PubMed]
- Gargi, A.; Sengun, I.Y. Marination liquids enriched with probiotics and their inactivation effects against food-borne pathogens inoculated on meat. Meat Sci. 2021, 182, 108624. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Sengun, I.Y. Inactivation effect of marination liquids prepared with koruk juice and dried koruk pomace on Salmonella Typhimurium, Escherichia coli O157: H7 and Listeria monocytogenes inoculated on meat. Int. J. Food Microbiol. 2019, 304, 32–38. [Google Scholar] [CrossRef]
- Lopes, S.M.; da Silva, D.C.; Tondo, E.C. Bactericidal effect of marinades on meats against different pathogens: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7650–7658. [Google Scholar] [CrossRef] [PubMed]
- Sharedeh, D.; Gatellier, P.; Astruc, T.; Daudin, J.D. Effects of pH and NaCl levels in a beef marinade on physicochemical states of lipids and proteins and on tissue microstructure. Meat Sci. 2015, 110, 24–31. [Google Scholar] [CrossRef]
- Fencioglu, H.; Oz, E.; Turhan, S.; Proestos, C.; Oz, F. The Effects of the Marination Process with Different Vinegar Varieties on Various Quality Criteria and Heterocyclic Aromatic Amine Formation in Beef Steak. Foods 2022, 11, 3251. [Google Scholar] [CrossRef]
- Tänavots, A.; Põldvere, A.; Kerner, K.; Veri, K.; Kaart, T.; Torp, J. Effects of mustard-honey, apple vinegar, white wine vinegar and kefir acidic marinades on the properties of pork. Vet. Ir Zootech. 2018, 76, 76–84. Available online: https://vetzoo.lsmuni.lt/data/vols/2018/76/pdf/tanavots.pdf (accessed on 10 January 2023).
- Gajewska, M.; Bartodziejska, B.; Szosland-Fałtyn, A. Wykorzystanie procesów fermentacyjnych do opracowania innowacyjnej metody otrzymywania octu jabłkowego o właściwościach prozdrowotnych. Żywność Nauka-Technol.-Jakość 2020, 3, 77–86. [Google Scholar] [CrossRef]
- Bartodziejska, B.; Dolatowski, Z.J.; Szosland-Fałtyn, A.; Paziak-Domańska, B.; Stanisławska, A.; Krępska, M.; Cis, A.; Kasprzyk, I.; Gajewska, M.; Kasperska, A.; et al. Raport z Realizacji Projektu nr 00001.DDD.6509.00041.2018.05 w Ramach Działania “Współpraca” Objętego PROW na Lata 2014–2020 Dotyczącą Projektu pn. “Wytwarzanie Octu Owocowego w Województwie Łódzkim, Mazowieckim i Śląskim We Współpracy z Instytutem Biotechnologii Przemysłu Rolno-Spożywczego im. Wacława Dąbrowskiego Jako Innowacji Produktowej, Procesowej i Technologicznej”. 2021. Available online: http://polskiocetowocowy.pl/wp-content/uploads/2021/03/RAPORT-Z-BADAN_POLSKI_OCET_OWOCOWY.pdf (accessed on 10 January 2023).
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Van Passel, S.; Lebailly, P. Organic farming and small-scale farmers: Main opportunities and challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef] [Green Version]
- ISO 1442:1997 Meat and Meat Products—Determination of Moisture Content (Reference Method). Available online: https://www.iso.org/standard/6037.html (accessed on 10 January 2023).
- ISO 937:1978 Meat and Meat Products—Determination of Nitrogen Content (Reference Method). Available online: https://www.iso.org/standard/5356.html (accessed on 10 January 2023).
- ISO 1444:1996 Meat and Meat Products—Determination of Free Fat Content. Available online: https://www.iso.org/standard/6041.html (accessed on 10 January 2023).
- IBPRS-PIB Procedura Laboratorium nr PA/04, Wydanie 7 z Dnia 08.06.2021 r. (Certyfikat Akredytacji Laboratorium Badawczego nr AB 553 Wydanym Przez Polskie Centrum Akredytacji). Available online: https://www.pca.gov.pl/akredytowane-podmioty/akredytacje-aktywne/laboratoria-badawcze/AB%20553,plik.html (accessed on 10 January 2023).
- PN-A-82059:1985 Przetwory Mięsne—Wykrywanie i Oznaczanie Zawartości Skrobi. Available online: https://sklep.pkn.pl/pn-a-82059-1985p.html (accessed on 10 January 2023).
- ISO 1841-2:1996 Meat and Meat Products—Determination of Chloride Content—Part 2: Potentiometric Method. Available online: https://www.iso.org/standard/23756.html (accessed on 10 January 2023).
- ISO 12966-1:2014 Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl esters—Part 1: Guidelines on Modern gas Chromatography of Fatty acid Methyl Esters. Available online: https://www.iso.org/standard/52294.html (accessed on 10 January 2023).
- IBPRS-PIB Procedura Laboratorium nr PA/09, Wydanie 3 z Dnia 08.06.2021 r. (Certyfikat Akredytacji Laboratorium Badawczego nr AB 553 Wydanym Przez Polskie Centrum Akredytacji). Available online: https://www.pca.gov.pl/akredytowane-podmioty/akredytacje-aktywne/laboratoria-badawcze/AB%20553,plik.html (accessed on 10 January 2023).
- PN-EN 12014-3:2006 Artykuły Żywnościowe—Oznaczanie Zawartości Azotanów i/lub Azotynów—Część 3: Spektrometryczne Oznaczanie Zawartości Azotanów i Azotynów w Produktach Mięsnych po Enzymatycznej Redukcji Azotanów do Azotynów. Available online: https://sklep.pkn.pl/pn-en-12014-3-2006p.html (accessed on 10 January 2023).
- Siu, D.C.; Henshall, A. Ion chromatographic determination of nitrate and nitrite in meat products. J. Chromatogr. A 1998, 804, 157–160. [Google Scholar] [CrossRef]
- ISO 18787:2017 Foodstuffs—Determination of Water Activity. Available online: https://www.iso.org/standard/63379.html (accessed on 10 January 2023).
- ISO 2917:1999 Meat and Meat Products—Measurement of pH—Reference Method. Available online: https://www.iso.org/standard/24785.html (accessed on 10 January 2023).
- Okoń, A.; Szymański, P.; Zielińska, D.; Szydłowska, A.; Siekierko, U.; Kołożyn-Krajewska, D.; Dolatowski, Z.J. The Influence of Acid Whey on the Lipid Composition and Oxidative Stability of Organic Uncured Fermented Bacon after Production and during Chilling Storage. Antioxidants 2021, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent advances in meat color research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- ISO 4833-1:2013 Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. Available online: https://www.iso.org/standard/53728.html (accessed on 10 January 2023).
- ISO 21528-2:2017 Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. Available online: https://www.iso.org/standard/63504.html (accessed on 10 January 2023).
- ISO 16649-1:2018 Microbiology of the Food chain—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 1: Colony-Count Technique at 44 Degrees C Using Membranes and 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide. Available online: https://www.iso.org/standard/64951.html (accessed on 10 January 2023).
- ISO 15214:1998 Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. Available online: https://www.iso.org/standard/26853.html (accessed on 10 January 2023).
- ISO 6888-1:2021 Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. Available online: https://www.iso.org/standard/76672.html (accessed on 10 January 2023).
- ISO 6579-1:2017 Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. Available online: https://www.iso.org/standard/56712.html (accessed on 10 January 2023).
- ISO 11290-1:2017 Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. Available online: https://www.iso.org/standard/60313.html (accessed on 10 January 2023).
- ISO 13299:2016 Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. Available online: https://www.iso.org/standard/58042.html (accessed on 10 January 2023).
- ISO 8586:2012 Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. Available online: https://www.iso.org/standard/45352.html (accessed on 10 January 2023).
- World Medical Association. WMA Declaration Of Helsinki—Ethical Principles For Medical Research Involving Human Subjects. 64th WMA General Assembly, Fortaleza, Brazil, October 2013. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 10 January 2023).
- Skałecki, P.; Babicz, M.; Domaradzki, P.; Litwińczuk, A.; Halabis, M.; Ruda, B. Podstawowy skład chemiczny, barwa oraz zawartość WWW i azotanów w wędzonych produktach z mięsa świń rasy puławskiej. Med. Weter. 2019, 75, 422–425. [Google Scholar] [CrossRef]
- PN-A-82007:1996/Az1:1998 Przetwory Mięsne—Wędliny. Available online: https://sklep.pkn.pl/pn-a-82007-1996-az1-1998p.html (accessed on 10 January 2023).
- Adriani, L.; Mainah, H.S.; Marbun, N. The effect of suplementation fermented kombucha tea on fat and cholesterol levels of duck meat. Lucrări Ştiinţifice. Ser. Zooteh. 2007, 55, 103. Available online: https://www.uaiasi.ro/firaa/Pdf/Pdf_Vol_55/Lovita_Adriani.pdf (accessed on 10 January 2023).
- Fushimi, T.; Suruga, K.; Oshima, Y.; Fukiharu, M.; Tsukamoto, Y.; Goda, T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br. J. Nutr. 2006, 95, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Samad, A.; Azlan, A.; Ismail, A. Therapeutic effects of vinegar: A review. Curr. Opin. Food Sci. 2016, 8, 56–61. [Google Scholar] [CrossRef]
- Zhao, Y.; He, Z.; Hao, W.; Zhu, H.; Liang, N.; Liu, J.; Zhang, C.; Ma, K.Y.; He, W.S.; Chen, Z.Y.; et al. Vinegars but not acetic acid are effective in reducing plasma cholesterol in hamsters fed a high-cholesterol diet. Food Funct. 2020, 11, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional properties of vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef] [PubMed]
- Valdes, D.S.; So, D.; Gill, P.A.; Kellow, N.J. Effect of dietary acetic acid supplementation on plasma glucose, lipid profiles, and body mass index in human adults: A systematic review and meta-analysis. J. Acad. Nutr. Diet. 2021, 121, 895–914. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Carballo, J.; Cofrades, S. Healthier meat and meat products: Their role as functional foods. Meat Sci. 2001, 59, 5–13. [Google Scholar] [CrossRef]
- Thøgersen, R.; Bertram, H.C. Reformulation of processed meat to attenuate potential harmful effects in the gastrointestinal tract–A review of current knowledge and evidence of health prospects. Trends Food Sci. Technol. 2021, 108, 111–118. [Google Scholar] [CrossRef]
- Halagarda, M.; Kędzior, W.; Pyrzyńska, E.; Kudełka, W. Fatty acid compositions of selected Polish pork hams and sausages as influenced by their traditionality. Sustainability 2018, 10, 3885. [Google Scholar] [CrossRef] [Green Version]
- Yong, H.I.; Kim, T.K.; Choi, H.D.; Jang, H.W.; Jung, S.; Choi, Y.S. Clean label meat technology: Pre-converted nitrite as a natural curing. Food Sci. Anim. Resour. 2021, 41, 173. [Google Scholar] [CrossRef]
- Szymański, P.; Łaszkiewicz, B.; Siekierko, U.; Kołożyn-Krajewska, D. Effects of the use of Staphylococcus carnosus in the curing process of meat with a reduced amount of sodium nitrite on colour, residue nitrite and nitrate, content of nitrosyl pigments, and microbiological and the sensory quality of cooked meat product. J. Food Qual. 2020, 2020, 6141728. [Google Scholar] [CrossRef]
- Peleg, M. A New Look at Models of the Combined Effect of Temperature, pH, Water Activity, or Other Factors on Microbial Growth Rate. Food Eng. Rev. 2021, 14, 31–44. [Google Scholar] [CrossRef]
- Jones, M.; Arnaud, E.; Gouws, P.; Hoffman, L.C. Effects of the addition of vinegar, weight loss and packaging method on the physicochemical properties and microbiological profile of biltong. Meat Sci. 2019, 156, 214–221. [Google Scholar] [CrossRef]
- Alagöz, E.; Ünal, K.; Cabi, A.; Sarıçoban, C. Determination of the effect of some acidic solutions on the tenderness and quality properties of chicken breast meat. Selcuk. J. Agric. Food Sci. 2020, 34, 19–23. [Google Scholar] [CrossRef]
- Tatiyaborworntham, N.; Oz, F.; Richards, M.P.; Wu, H. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chem. X 2022, 14, 100317. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. Lipid oxidation and its implications to meat quality and human health. Food Sci. Biotechnol. 2019, 28, 1275–1285. [Google Scholar] [CrossRef]
- Zhang, Y.; Holman, B.W.; Ponnampalam, E.N.; Kerr, M.G.; Bailes, K.L.; Kilgannon, A.K.; Collins, D.; Hopkins, D.L. Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS). Meat Sci. 2019, 149, 114–119. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Fraqueza, M.J.; Laranjo, M.; Elias, M.; Patarata, L. Microbiological hazards associated with salt and nitrite reduction in cured meat products: Control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Curr. Opin. Food Sci. 2021, 38, 32–39. [Google Scholar] [CrossRef]
- Siekmann, L.; Plötz, M.; Krischek, C. Alternative curing methods. Curr. Clin. Microbiol. Rep. 2021, 8, 40–48. [Google Scholar] [CrossRef]
- Kim, Y.J.; Jin, S.K.; Park, W.Y.; Kim, B.W.; Joo, S.T.; Yang, H.S. The effect of garlic or onion marinade on the lipid oxidation and meat quality of pork during cold storage. J. Food Qual. 2010, 33, 171–185. [Google Scholar] [CrossRef]
- Serdaroğlu, M.; Abdraimov, K.; Oenenc, A. The effects of marinating with citric acid solutions and grapefruit juice on cooking and eating quality of turkey breast. J. Muscle Foods 2007, 18, 162–172. [Google Scholar] [CrossRef]
- Rivera, N.; Bunning, M.; Martin, J. Uncured-labeled meat products produced using plant-derived nitrates and nitrites: Chemistry, safety, and regulatory considerations. J. Agric. Food Chem. 2019, 67, 8074–8084. [Google Scholar] [CrossRef]
- Lytou, A.E.; Panagou, E.Z.; Nychas, G.J.E. Effect of different marinating conditions on the evolution of spoilage microbiota and metabolomic profile of chicken breast fillets. Food Microbiology 2017, 66, 141–149. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef]
Treatment | Moisture (%) | Protein (%) | Fat (%) | Carbohydrates (%) | NaCl (%) |
---|---|---|---|---|---|
S1 | 65.60 ± 0.94 a | 26.85 ± 1.08 a | 4.88 ± 1.48 a | <0.50 | 2.05 ± 0.10 a |
S2 | 63.55 ± 1.34 a | 28.88 ± 1.37 a | 4.88 ± 0.63 a | <0.50 | 1.63 ± 0.28 a |
S3 | 64.48 ± 0.74 a | 29.05 ± 0.69 a | 4.40 ± 0.54 a | <0.50 | 1.73 ± 0.43 a |
Parameter | Treatment | Storage (Days) | ||
---|---|---|---|---|
0 | 7 | 14 | ||
SFA (%) | S1 | 36.68 ± 0.56 aA | 36.28 ± 0.34 aA | 37.45 ± 0.84 aA |
S2 | 37.30 ± 0.70 aA | 37.10 ± 0.94 aA | 36.85 ± 0.44 aA | |
S3 | 36.50 ± 0.65 aA | 36.90 ± 0.94 aA | 37.18 ± 0.44 aA | |
MUFA (%) | S1 | 50.98 ± 1.44 aA | 51.73 ± 1.32 aA | 51.98 ± 1.82 aA |
S2 | 50.15 ± 0.66 aA | 50.40 ± 0.86 aA | 51.13 ± 1.20 aA | |
S3 | 52.35 ± 1.06 aA | 51.13 ± 0.86 aA | 49.95 ± 1.20 aA | |
PUFA (%) | S1 | 12.33 ± 1.23 aA | 12.00 ± 1.26 aA | 10.53 ± 1.22 aA |
S2 | 12.55 ± 0.66 aA | 12.50 ± 0.27 aA | 12.03 ± 1.09 aA | |
S3 | 11.13 ± 0.57 aA | 11.93 ± 0.27 aA | 12.78 ± 1.09 aA | |
Trans (%) | S1 | 0.15 ± 0.06 aA | 0.15 ± 0.06 aA | 0.15 ± 0.06 aA |
S2 | 0.20 ± 0.00 aB | 0.18 ± 0.05 aB | 0.10 ± 0.00 aA | |
S3 | 0.10 ± 0.00 aA | 0.10 ± 0.05 aA | 0.13 ± 0.00 aA | |
Cholesterol (mg/100 g of product) | S1 | 62.65 ± 5.09 aA | 71.25 ± 1.53 aB | 64.88 ± 1.94 aA |
S2 | 60.20 ± 2.53 aA | 73.70 ± 0.13 aB | 70.63 ± 3.03 bB | |
S3 | 66.30 ± 3.92 aA | 76.05 ± 1.13 aB | 72.38 ± 3.03 bB |
Parameter | Treatment | Storage (days) | ||
---|---|---|---|---|
0 | 7 | 14 | ||
L* | S1 | 66.24 ± 2.12 aB | 64.63 ± 2.14 aA | 66.41 ± 2.55 bB |
S2 | 65.29 ± 2.50 aA | 67.50 ± 2.08 bB | 67.17 ± 3.51 aB | |
S3 | 69.26 ± 1.46 bA | 68.35 ± 2.18 bA | 68.89 ± 2.20 bA | |
a* | S1 | 16.07 ± 0.97 bA | 15.91 ± 1.02 bA | 15.65 ± 1.16 bA |
S2 | 16.08 ± 1.46 bA | 15.91 ± 1.06 bA | 16.09 ± 1.45 bA | |
S3 | 10.81 ± 1.30 aA | 10.96 ± 1.27 aA | 12.98 ± 1.37 aB | |
b* | S1 | 2.43 ± 0.52 aC | 2.06 ± 0.61 aB | 1.70 ± 0.64 aA |
S2 | 2.13 ± 0.63 aB | 1.78 ± 0.68 aA | 2.02 ± 0.63 aA | |
S3 | 3.98 ± 1.03 bB | 3.75 ± 0.84 bB | 3.12 ± 0.99 bA |
Parameter | Treatment | Storage (days) | ||
---|---|---|---|---|
0 | 7 | 14 | ||
TVC (log CFU/g) | S1 | 1.42 ± 0.39 aA | 1.23 ± 0.21 aA | 3.14 ± 0.57 bB |
S2 | 1.10 ± 0.17 aA | 1.26 ± 0.24 aA | 4.41 ± 0.02 bB | |
S3 | 1.16 ± 0.27 aA | 1.32 ± 0.27 aA | 2.29 ± 0.06 bA | |
ENT (log CFU/g) | S1 | <1.00 | <1.00 | <1.00 |
S2 | <1.00 | <1.00 | <1.00 | |
S3 | <1.00 | <1.00 | <1.00 | |
EC (log CFU/g) | S1 | <1.00 | <1.00 | <1.00 |
S2 | <1.00 | <1.00 | <1.00 | |
S3 | <1.00 | <1.00 | <1.00 | |
LAB (log CFU/g) | S1 | 1.00 ± 0.00 aA | 2.35 ± 0.05 aA | 2.50 ± 0.18 aA |
S2 | 1.00 ± 0.00 aA | 1.10 ± 0.17 aA | 1.49 ± 0.19 aA | |
S3 | 1.00 ± 0.00 aA | 2.89 ± 0.01 bB | 3.43 ± 0.08 bB | |
AAB (log CFU/g) | S1 | <1.00 aA | <1.00 aA | <1.00 aA |
S2 | 3.10 ± 0.10 aB | 3.17 ± 0.13 aB | 2.49 ± 0.19 bB | |
S3 | 3.24 ± 0.21 aB | 3.43 ± 0.08 aB | 3.20 ± 0.08 aB | |
SA (log CFU/g) | S1 | <1.00 | <1.00 | <1.00 |
S2 | <1.00 | <1.00 | <1.00 | |
S3 | <1.00 | <1.00 | <1.00 | |
SAL | S1 | nd | nd | nd |
S2 | nd | nd | nd | |
S3 | nd | nd | nd | |
LM | S1 | nd | nd | nd |
S2 | nd | nd | nd | |
S3 | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łepecka, A.; Szymański, P.; Okoń, A.; Siekierko, U.; Zielińska, D.; Trząskowska, M.; Neffe-Skocińska, K.; Sionek, B.; Kajak-Siemaszko, K.; Karbowiak, M.; et al. The Influence of the Apple Vinegar Marination Process on the Technological, Microbiological and Sensory Quality of Organic Smoked Pork Hams. Foods 2023, 12, 1565. https://doi.org/10.3390/foods12081565
Łepecka A, Szymański P, Okoń A, Siekierko U, Zielińska D, Trząskowska M, Neffe-Skocińska K, Sionek B, Kajak-Siemaszko K, Karbowiak M, et al. The Influence of the Apple Vinegar Marination Process on the Technological, Microbiological and Sensory Quality of Organic Smoked Pork Hams. Foods. 2023; 12(8):1565. https://doi.org/10.3390/foods12081565
Chicago/Turabian StyleŁepecka, Anna, Piotr Szymański, Anna Okoń, Urszula Siekierko, Dorota Zielińska, Monika Trząskowska, Katarzyna Neffe-Skocińska, Barbara Sionek, Katarzyna Kajak-Siemaszko, Marcelina Karbowiak, and et al. 2023. "The Influence of the Apple Vinegar Marination Process on the Technological, Microbiological and Sensory Quality of Organic Smoked Pork Hams" Foods 12, no. 8: 1565. https://doi.org/10.3390/foods12081565
APA StyleŁepecka, A., Szymański, P., Okoń, A., Siekierko, U., Zielińska, D., Trząskowska, M., Neffe-Skocińska, K., Sionek, B., Kajak-Siemaszko, K., Karbowiak, M., Kołożyn-Krajewska, D., & Dolatowski, Z. J. (2023). The Influence of the Apple Vinegar Marination Process on the Technological, Microbiological and Sensory Quality of Organic Smoked Pork Hams. Foods, 12(8), 1565. https://doi.org/10.3390/foods12081565