A Review on the Role of Lactic Acid Bacteria in the Formation and Reduction of Volatile Nitrosamines in Fermented Sausages
Abstract
:1. Introduction
2. Lactic Acid Bacteria and Nitrosamine Formation in Fermented Sausages
3. Occurrence of Volatile Nitrosamines in Fermented Sausages
Fermented Sausage | Number of Samples Analyzed | Number of Samples with Nitrosamine | Detected NAs | NAs Level (μg/kg) | References | |
---|---|---|---|---|---|---|
Range | Mean | |||||
Raw ripened sausages (Salami, German sausages etc.) | 15 | 8 | NDMA | 0.1–0.6 | - | [90] |
15 | 3 | NPIP | 1.0–5.0 | - | ||
15 | 1 | NPYR | 3.0 | 3.0 | ||
German sausage (Mettwurst), pate (non-smoked) | 10 | 10 | NDMA | nd–0.84 | 0.26 | [80] |
10 | 8 | NDEA | 0.02–7.5 | 1.1 | ||
10 | 8 | NDBA | nd–1.3 | 0.26 | ||
10 | 6 | NPIP | nd–0.41 | 0.06 | ||
10 | 4 | NMOR | nd–1.7 | 0.24 | ||
Salami | 4 | 4 | NDMA | 0.59–7.76 | 5.35 | [86] |
4 | 4 | NDEA | nd–4.04 | 0.35 | ||
4 | 4 | NDBA | 0.73–50.12 | 19.71 | ||
4 | 4 | NPIP | nd–0.38 | nd | ||
Salami | 4 | 4 | NDMA | nd–2.1 | 0.45 | [80] |
4 | 4 | NDEA | 1.5–12 | 4.6 | ||
4 | 4 | NDBA | 0.29–2.0 | 0.56 | ||
4 | 3 | NPIP | nd–0.58 | 0.17 | ||
Salami | 10 | 10 | NDMA | - | 0.84 | [19] |
10 | 10 | NDEA | - | 0.67 | ||
10 | 10 | NPYR | - | 0.93 | ||
10 | 10 | NPIP | - | 0.64 | ||
10 | 10 | NDBA | - | 0.84 | ||
Salami (Danish samples) | 24 | 15 | NDMA | - | 1.6 | [31] |
24 | 1 | NMOR | - | 0.5 | ||
24 | 10 | NPYR | - | 2.1 | ||
24 | 6 | NDEA | - | 0.3 | ||
24 | 5 | NPIP | - | 0.1 | ||
Salami (Belgian samples) | 9 | 5 | NDMA | - | 2.6 | [31] |
9 | 1 | NMOR | - | 0.5 | ||
9 | 7 | NPYR | - | 2.7 | ||
9 | 7 | NPIP | - | 0.3 | ||
Sucuk | 10 | 10 | NDMA | 2.21 ± 0.82 | - | [92] |
10 | 10 | NMEA | 1.16 ± 0.39 | - | ||
10 | 10 | NDEA | 2.25 ± 0.70 | - | ||
10 | 10 | NPYR | 3.84 ± 0.88 | - | ||
10 | 10 | NMOR | 0.21 ± 0.07 | - | ||
10 | 10 | NPIP | 3.07 ± 0.89 | - | ||
10 | 10 | NDBA | 1.25 ± 0.40 | - | ||
10 | 10 | NEBA | 0.53 ± 0.41 | - | ||
Sucuk | 6 | 5 | NDMA | 0.11–0.78 | - | [81] |
6 | 4 | NDEA | 0.10–0.95 | - | ||
6 | 5 | NDPA | 0.27–1.35 | - | ||
6 | 6 | NPYR | 0.11–1.36 | - | ||
6 | 6 | NPIP | 0.16–2.71 | - | ||
6 | 4 | NDBA | 0.15–1.68 | - | ||
Sucuk | 30 | 7 | NDMA | 0.40–0.81 | 0.52 | [91] |
30 | 3 | NMEA | 0.43–0.48 | 0.45 | ||
30 | 15 | NPIP | 0.32–0.95 | 0.61 | ||
Heat-treated sucuk | 30 | 30 | NDMA | 1.71–3.57 | - | [93] |
30 | 30 | NPYR | 1.65–7.29 | - | ||
30 | 30 | NPIP | 5.19–16.40 | - |
4. Possibilities for Nitrosamine Reduction by Lactic Acid Bacteria in Fermented Sausages
4.1. Inhibition of Biogenic Amine Positive Microorganisms
4.2. Effect of Nitrite Depletion/Degradation on Nitrosamine Reduction
4.3. Adsorption and Degradation of Nitrosamines by Lactic Acid Bacteria
Lactic Acid Bacteria Strains | Source of Strains | Environment | Nitrosamines | Mechanism | Reference |
---|---|---|---|---|---|
Lacticaseibacillus rhamnosus ŁOCK 0900 L. rhamnosus ŁOCK 0908 Lacticaseibacillus casei ŁOCK 0919 Levilactobacillus brevis 0945 | Human Human Human Plant | In Vitro |
|
| [127] |
Lactiplantibacillus pentosus R1 Latilactobacillus curvatus R5 Latilactobacillus sakei L6 | Harbin dry sausage | Harbin dry sausage |
|
| [38] |
Lactiplantibacillus pentosus R3 | Chinese dry sausage | Chinese dry sausage In vitro |
|
| [88] |
L. pentosus R3 | Chinese dry sausage | In vitro |
|
| [128] |
L. pentosus R3 | Chinese dry sausage | Fermented cooked sausage |
|
| [131] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ursachi, C.Ş.; Perta-Crisan, S.; Munteanu, F.D. Strategies to Improve Meat Products’ Quality. Foods 2020, 9, 1883. [Google Scholar] [CrossRef] [PubMed]
- Libera, J.; Iłowiecka, K.; Stasiak, D. Consumption of processed red meat and its impact on human health: A review. Int. J. Food Sci. Technol. 2021, 56, 6115–6123. [Google Scholar]
- Asaithambi, N.; Singh, S.K.; Singha, P. Current status of non-thermal processing of probiotic foods: A review. J. Food Eng. 2021, 303, 110567. [Google Scholar] [CrossRef]
- Galanakis, C.M. Functionality of Food Components and Emerging Technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Santos Rocha, C.; Magnani, M.; Paiva Anciens Ramos, G.L.; Bezerril, F.F.; Freitas, M.Q.; Cruz, A.G.; Pimentel, T.C. Emerging technologies in food processing: Impacts on sensory characteristics and consumer perception. Curr. Opin. Food Sci. 2022, 47, 100892. [Google Scholar] [CrossRef]
- Lücke, F.-K. Fermented sausages. In The Microbiology of Fermented Foods; Wood, B.J.B., Ed.; Blackie Academic and Profession: Glasgow, UK, 1998; pp. 441–483. [Google Scholar]
- Kaban, G. Changes in the composition of volatile compounds and in microbiological and physicochemical parameters during pastırma processing. Meat Sci. 2009, 82, 17–23. [Google Scholar] [CrossRef]
- Vidal, V.A.S.; Lorenzo, J.M.; Munekata, P.E.S.; Pollonio, M.A.R. Challenges to reduce or replace NaCl by chloride salts in meat products made from whole pieces–a review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2194–2206. [Google Scholar] [CrossRef]
- Kaya, M.; Kaban, M. Fermente et Ürünleri. In Gıda Biyoteknolojisi; Aran, N., Ed.; Nobel Yayıncılık: İstanbul, Turkey, 2019; pp. 157–195. [Google Scholar]
- Lücke, F.-K. Fermented Meat Products-An Overview. In Fermented Meat Products-Health Aspects; Zdolec, N., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2017; pp. 1–14. [Google Scholar]
- Vignolo, G.; Fontana, C.; Fadda, S. Semidry and Dry Fermented Sausages. In Handbook of Meat Processing; Toldra, F., Ed.; Blackwell Publishing: Ames, IA, USA, 2010; pp. 379–398. [Google Scholar]
- Yılmaz Oral, Z.F.; Kaban, G. Effects of autochthonous strains on volatile compounds and quality properties of heat- treated sucuk. Food Biosci. 2021, 43, 101140. [Google Scholar] [CrossRef]
- Kaban, G.; Kaya, M.; Lücke, F.-L. Meat Starter Cultures. In Encyclopedia of Biotechnology in Agriculture and Food; Taylor and Francis: New York, NY, USA, 2012; pp. 1–4. [Google Scholar]
- Flores, M.; Perea-Sanz, L.; Belloch, C. Nitrite reduction in fermented meat products and its impact on aroma. Adv. Food Nutr. Res. 2021, 95, 131–181. [Google Scholar]
- Sirini, N.; Munekata, P.E.S.; Lorenzo, J.M.; Stegmayer, M.Á.; Pateiro, M.; Pérez-Álvarez, J.Á.; Sepúlveda, N.; Sosa-Morales, M.E.; Teixeira, A.; Fernández-López, J. Development of Healthier and Functional Dry Fermented Sausages: Present and Future. Foods 2022, 11, 1128. [Google Scholar] [CrossRef]
- De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2909–2923. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Mora, L.; Reig, M.; Toldrá, F. Risk assessment of chemical substances of safety concern generated in processed meats. Food Sci. Hum. Wellness 2019, 8, 244–251. [Google Scholar] [CrossRef]
- De Mey, E.; De Klerck, K.; De Maere, H.; Dewulf, L.; Derdelinckx, G.; Peeters, M. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci. 2014, 96, 821–828. [Google Scholar] [CrossRef]
- Yurchenko, S.; Mölder, U. The occurance of volatile N-nitrosamines in Eastonian meat products. Food Chem. 2007, 100, 1713–1721. [Google Scholar] [CrossRef]
- Mirzazedeh, M.; Sadeghi, E.; Beigmohamammadi, F. Comparison of the effects of microwave cooking by two conventional cooking methods on the concentrations of polycyclic aromatic hydrocarbons and volatile N- nitrosamines in beef cocktail smokies (smoked sausages). J. Food Process. Preserv. 2021, 45, e15560. [Google Scholar] [CrossRef]
- Seo, J.; Park, J.; Lee, Y.; Do, B.; Lee, J.; Kwon, H. Effect of cooking method on the concentrations of volatile N-nitrosamines in various food products. J. Food Process. Preserv. 2022, 46, e16590. [Google Scholar] [CrossRef]
- Balamurugan, S.; Gemmell, C.; Lau, A.T.Y.; Arvaj, L.; Strange, P.; Gao, A.; Barbut, S. High pressure processing during drying of fermented sausages can enhance safety and reduce time required to produce a dry fermented product. Food Control. 2020, 113, 107224. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Xu, X.; Zhou, G. Influence of Various Cooking Methods on The Concentrations of Volatile N-Nitrosamines and Biogenic Amines in Dry-Cured Sausages. J. Food Sci. 2012, 77, C560–C565. [Google Scholar] [CrossRef] [PubMed]
- Sallan, S.; Kaban, G.; Kaya, M. Nitrosamines in Sucuk: Effects of Black Pepper, Sodium Ascorbate and Cooking Level. Food Chem. 2019, 288, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Sallan, S.; Kaban, G.; Şişik Oğraş, Ş.; Çelik, M.; Kaya, M. Nitrosamine Formation In A Semi-Dry Fermented Sausage: Effects Of Nitrite, Ascorbate And Starter Culture And Role Of Cooking. Meat Sci. 2020, 159, 107917. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S. Literature compilation of volatile N-nitrosamines in processed meat and poultry products—An update. Food Addit. Contam. Part A 2019, 36, 1491–1500. [Google Scholar] [CrossRef]
- IARC, International Agency for Research on Cancer, Agents Classifed by the IARC Monographs. Volumes 1–128. 2022. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 1 January 2023).
- Herrmann, S.S.; Granby, K.; Duedahl-Olesen, L. Formation and Mitigation of N-nitrosamines In Nitrite Preserved Cooked Sausages. Food Chem. 2015, 174, 516–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, F.; Zhuang, H.; Chen, X.; Li, L.; Qiao, W.; Zhang, J. Effects of plant polyphenols and α-tocopherol on lipid oxidation, residual nitrites, biogenic amines and n-nitrosamines formation during ripening and storage of dry-cured bacon. LWT 2015, 60, 199–206. [Google Scholar] [CrossRef]
- Deng, S.; Jin, J.; He, Q. Inhibitory Effect of epigallocatechin gallate, epigallocatechin, and gallic acid on the formation of n-nitrosodiethylamine in vitro. J. Food Sci. 2019, 84, 2159–2164. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Duedahl-Olesen, L.; Granby, K. Occurrence of volatile and non-volatile N-nitrosamines in processed meat products and the role of heat treatment. Food Control 2015, 48, 163–169. [Google Scholar] [CrossRef]
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrtie in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M. Reduction of nitrite in meat products through the application of various plant-based ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Toldrá, F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products-Invited review. Meat Sci. 2021, 171, 108272. [Google Scholar] [CrossRef] [PubMed]
- Dalzini, E.; Merigo, D.; Caproli, A.; Monastero, P.; Cosciani-Cunico, E.; Losio, M.N.; Daminelli, P. Inactivation of Listeria monocytogenes and Salmonella spp. in milano-type salami made with alternative formulations to the use of synthetic nitrates/nitrites. Microorganisms 2022, 10, 562. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kang, K.H.; Kim, S.H.; Lee, S.; Lee, S.-H.; Ha, E.-S.; Sung, N.-J.; Kim, J.G.; Chung, M.J. lactic acid bacteria directly degrade n-nitrosodimethylamine and increase the nitrite-scavenging ability in kimchi. Food Control 2017, 71, 101–109. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, S.H.; Kang, K.H.; Lee, S.; Kim, S.J.; Kim, J.G.; Chung, M.J. Kimchi Probiotic Bacteria Contribute To Reduced Amounts Of N-Nitrosodimethylamine In Lactic Acid Bacteria-Fortified Kimchi. LWT 2017, 84, 196–203. [Google Scholar] [CrossRef]
- Sun, F.; Kong, B.; Chen, Q.; Han, Q.; Diao, X. N-nitrosoamine inhibition and quality preservation of harbin dry sausages by inoculated with Lactobacillus pentosus, Lactobacillus curvatus and Lactobacillus sake. Food Control 2017, 73, 1514–1521. [Google Scholar] [CrossRef]
- Liao, E.; Xu, Y.; Jiang, O.; Xia, W. effects of inoculating autochthonous starter cultures on n-nitrosodimethylamine and its precursors formation during fermentation of chinese traditional fermented fish. Food Chem. 2019, 271, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Lebert, I.; Leroy, S.; Giammarinaro, P.; Lebert, A.; Chacornac, J.P.; Bover-Cid, S.; Vidal-Carou, M.C.; Talon, R. Diversity of microorganisms in the environment and dry fermented sausages of small traditional French processing units. Meat Sci. 2017, 76, 112–122. [Google Scholar] [CrossRef]
- Vignolo, G.; Fadda, S. Starter Cultures: Bioprotective Cultures. In Handbook of Fermented Meat and Poultry; Toldra, F., Ed.; Blackwell Publishing: Oxford, UK, 2017; pp. 147–157. [Google Scholar]
- Drosinos, E.H.; Paramithiotis, S. Current Trends in Microbiological, Technological and Nutritional Aspects of Fermented Sausages. In Fermented Foods Part II:T Technological Intervensions; Ray, R.C., Montent, D., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Papamanoli, E.; Tzanetaki, N.; Litopoulou-Tzanetaki, E.; Kotzekidou, P. Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Sci. 2003, 65, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Drosinos, E.H.; Paramithiotis, S.; Kolovos, G.; Tsikouras, I.; Metaxopoulos, I. Phenotypic and technological diversity of lactic acid bacteria and Staphylococci isolated from traditionally fermented sausages in southern Greece. Food Microbiol. 2007, 24, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Kaban, G.; Kaya, M. Identification of lactic acid bacteria and Gram-positive catalase-positive cocci isolated from naturally fermented sausage (Sucuk). J. Food Sci. 2008, 73, M385–M388. [Google Scholar] [CrossRef] [PubMed]
- Kaban, G. Sucuk and pastırma: Microbiological changes and formation of volatile compounds. Meat Sci. 2013, 95, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Verluyten, J.; De Vuyst, L. Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol. 2006, 106, 270–285. [Google Scholar] [CrossRef]
- Jessen, B. Starter cultures for meat fermentation. In Fermented Meats; Campbell-Platt, G., Cook, P.E., Eds.; Blackie Academic and Professional: Glasgow, UK, 1995; pp. 130–159. [Google Scholar]
- Kaban, G.; Kaya, M. Effect of starter culture on growth of Staphylococcus aureus in sucuk. Food Control 2006, 17, 797–801. [Google Scholar] [CrossRef]
- Lücke, F.-K. Utilization of microbes to process and preserve meat. Meat Sci. 2000, 56, 105–115. [Google Scholar] [CrossRef]
- García-Díez, J.; Saraiva, C. Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. Int. J. Environ. Res. Public Health 2021, 18, 2544. [Google Scholar] [CrossRef]
- Honikel, K.-O. Curing. In Handbook of Meat Processing; Toldra, F., Ed.; Wiley-Blackwell Publishing: Ames, IA, USA, 2010. [Google Scholar]
- Sebranek, J.G.; Bacus, J.N. Cured meat products without direct addition of nitrate or nitrite: What are the issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.S. N-Nitrosamines in Processed Meat Products-Analysis, Occurance, Formation, Mitigation and Exposure. Ph.D. Thesis, Techinal University of Denmak, Lyngby, Denmark, 2014; p. 15. [Google Scholar]
- De Mey, E. N-Nitrosamines in Dry Fermented Sausages: Occurance and Nitrosamine Formation of N-Nitrosopiperidine. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2014; pp. 13–34. [Google Scholar]
- Wu, Y.; Qin, L.; Chen, J.; Wang, H.; Liao, E. Nitrite, biogenic amines and volatile N-nitrosamines in commercial Chinese traditional fermented fish products. Food Addit. Contam. Part B 2022, 15, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.-O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Drabik-Markiewicz, G.; Maagdenberg, K.V.; De Mey, E.; Deprez, S.; Kowalska, T. Role of proline and hydroxyproline in N-nitrosamine formation during heating in cured meat. Meat Sci. 2009, 81, 479–486. [Google Scholar] [CrossRef]
- De Mey, E.; De Maere, H.; Goemaere, O.; Steen, L.; Peeters, M.C.; Derdelinckx, G.; Paelinck, H.; Fraeye, I. Evaluation of N-nitrosopiperidine formation from biogenic amines during the production of dry fermented sausages. Food Bioprocess Tech. 2014, 7, 1269–1280. [Google Scholar] [CrossRef]
- Pegg, R.B.; Shahidi, F. Nitrite curing of meat. In The N-Nitrosamine Problem and Nitrite Alternatives; Pegg, R.B., Shahidi, F., Eds.; Food & Nutrition: Trumbull, CT, Canada, 2000; pp. 175–208. [Google Scholar]
- Bonifacie, A.; Gatellier, P.; Promeyrat, A.; Nassy, G.; Picgirard, L.; Scislowski, V.; Santé-Lhoutellier, V.; Théron, L. New Insights into the Chemical Reactivity of Dry-Cured Fermented Sausages: Focus on Nitrosation, Nitrosylation and Oxidation. Foods 2021, 10, 852. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, B.; Lan, Q.; Zhao, X.; Wang, Y.; Pei, H.; Huang, X.; Deng, L.; Li, J.; et al. Effects of lipids with different oxidation levels on protein degradation and biogenic amines formation in Sichuan-style sausages. LWT 2022, 161, 113344. [Google Scholar] [CrossRef]
- Toldra, F.; Sanz, Y.; Flores, M. Meat fermentation technology. In Meat Science and Applications; Hui, Y.H., Nip, W.K., Rogers, R.W., Young, O.A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 538–561. [Google Scholar]
- Demeyer, D.; Raemaekers, M.; Rizzo, A.; Holck, A.; De Smedt, A.; Brink, B.; Hagen, B.; Montel, C.; Zanardi, E.; Murbrekk, E.; et al. Control of bioflavour and safety in fermended sausages: First results of a European project. Food Res. Int. 2000, 33, 171–180. [Google Scholar] [CrossRef]
- Vestergaard, C.S.; Schivazappa, C.; Virgili, R. Lipolysis in dry-cured ham maturation. Meat Sci. 2000, 55, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Montel, M.C.; Masson, F.; Talon, R. Bacterial role in flavour development. Meat Sci. 1998, 49, S111–S123. [Google Scholar] [CrossRef]
- Danilović, B.; Savić, D. Microbial Ecology of Fermented Sausages and Dry-Cured Meats. In Fermented Meat Products-Health Aspects; Zdolec, N., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2016; pp. 127–166. [Google Scholar]
- Ammor, S.; Dufour, E.; Zagorec, M.; Chaillou, S.; Chevallier, I. Charac- terization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures. Food Microbiol. 2005, 22, 529e538. [Google Scholar] [CrossRef]
- Sanz, Y.; Fadda, S.; Vignolo, G.; Aristoy, M.C.; Oliver, G.; Toldrá, F. Hydrolysis of muscle myofibrillar proteins by Lactobacillus curvatus and Lactobacillus sakei. Int. J. Food Microbiol. 1999, 53, 115e125. [Google Scholar] [CrossRef] [PubMed]
- Fadda, S.; Sanz, Y.; Vignolo, G.; Aristoy, M.; Oliver, G.; Toldrà, F. Characterisation of muscle sarcoplasmic and myofibrillar protein hydrolysis caused by Lactobacillus plantarum. Appl. Environ. Microb. 1999, 65, 3540–3546. [Google Scholar] [CrossRef]
- Fadda, S.; Sanz, Y.; Vignolo, G.; Aristoy, M.; Oliver, G.; Toldrà, F. Hydrolysis of pork muscle sarcoplasmic proteins by Lactobacillus curvatus and Lactobacillus sakei. Appl. Environ. Microb. 1999, 65, 578–584. [Google Scholar] [CrossRef]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Impens, S.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545. [Google Scholar] [CrossRef]
- Lijinsky, W.; Epstein, S.S. Nitrosamines as environmental carcinogens. Nature 1970, 225, 21–23. [Google Scholar] [CrossRef]
- Gray, J.I.; Collins, M.E. A comparison of proline and putrescine as precursors of N-nitrosopyrrolidine in nitrite-treated pork system. J. Food Sci. 1977, 42, 1034–1037. [Google Scholar] [CrossRef]
- Sallan, S.; Kaya, M. Fermente Sosisler. In Mühendislik Alanında Araştırma ve Değerlendirmeler–II; Bardak, S., Aydın, N., Boztoprak, Y., Eds.; Gece Kitaplığı: Ankara, Turkey, 2021; pp. 1–14. [Google Scholar]
- Mottram, D.S.; Patterson, R.L.; Rhodes, D.N.; Gough, T.A. Influence of ascorbic acid and ph on the formation of N-nitrosodimethylamine in cured pork containing added dimethylamine. J. Sci. Food Agric. 1975, 26, 47–53. [Google Scholar] [CrossRef]
- Warthesen, J.J.; Scanlan, R.A.; Bills, D.D.; Libbey, L.M. Formation of Heterocyclic N-nitrosamines from the reaction of nitrite and selected primary diamines and amino acids. J. Agric. Food Chem. 1975, 23, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.; Reyes, F.G.R.; Rath, S. A method for the determination of volatile N-nitrosamines in food by HS-SPME-GC-TEA. Food Chem. 2005, 91, 173–179. [Google Scholar] [CrossRef]
- Crews, C. The Determination of N-nitrosamines in food. Qual. Assur.Saf. Crops Foods. 2010, 2, 2–12. [Google Scholar] [CrossRef]
- Mavelle, T.; Bouchikhi, B.; Debry, G. The occurrence of volatile N-nitrosamines in French Foodstuffs. Food Chem. 1991, 42, 321–338. [Google Scholar] [CrossRef]
- Ozel, M.Z.; Gogus, F.; Yagci, S.; Hamilton, J.F.; Lewis, A.C. Determination of volatile nitrosamines in various meat products using comprehensive gas chromatography–nitrogen chemiluminescence detection. Food Chem. Toxicol. 2010, 48, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Fiddler, W.; Pensabene, J.W.; Gates, R.A.; Adam, R. Nitrosamine formation in processed hams as related to reformulated elastic rubber netting. J. Food Sci. 1998, 63, 276–278. [Google Scholar] [CrossRef]
- Pensabene, J.W.; Fiddler, W.; Gates, R.A. Nitrosamine formation and penetration in hams processed in elastic rubber nettings: N-Nitrosodibutylamine and N- Nitrosodibenzylamine. J. Agric. Food Chem. 1995, 43, 1919–1922. [Google Scholar] [CrossRef]
- Sen, N.P.; Baddoo, P.A.; Seaman, S.W. Volatile nitrosamines in cured meats packaged in elastic rubber nettings. J. Agric. Food Chem. 1987, 35, 346–350. [Google Scholar] [CrossRef]
- Gloria, M.B.A.; Barbour, J.F.; Scanlan, R.A. Volatile nitrosamines in fried bacon. J. Agric. Food Chem. 1997, 45, 1816–1818. [Google Scholar] [CrossRef]
- Gavinelli, M.; Fanelli, R.; Bonfanti, M.; Davoli, E.; Airoldi, L. Volatile nitrosamines in foods and beverages: Preliminary survey of the Italian Market. Bull. Environ. Contam. Toxicol. 1988, 40, 41–46. [Google Scholar] [CrossRef]
- Sun, W.Q.; Meng, P.P.; Ma, L.Z. Relationship between N- nitrosodiethylamine formation and protein oxidation in pork protein extracts. Eur. Food Res. Technol. 2014, 239, 679–686. [Google Scholar] [CrossRef]
- Xiao, Y.Q.; Li, P.J.; Zhou, Y.; Ma, F.; Chen, C.G. Effect of inoculating Lactobacillus pentosus R3 on N-nitrosamines and bacterial communities in dry fermented sausages. Food Control 2018, 87, 126–134. [Google Scholar] [CrossRef]
- Yılmaz Oral, Z.F. Fermente Sosislerde Biyojen Aminler. In Mühendislik Alanında Araştırma ve Değerlendirmeler–I; Bardak, S., Aydın, N., Boztoprak, Y., Eds.; Gece Kitaplığı: Ankara, Turkey, 2021; pp. 55–67. [Google Scholar]
- Ellen, G.; Egmond, E.; Sahertian, E.T. N-nitrosamines and residual nitrite in cured meats from the Dutch market. Z Lebensm Unters Forsch 1986, 182, 14–18. [Google Scholar] [CrossRef]
- Kızılkaya, M.F.; Yılmaz Oral, Z.F.; Sallan, S.; Kaban, G.; Kaya, M.V. Volatile nitrosamines in a dry fermented sausage: Occurrence and effect of cooking on their formation. J. Food Compos. Anal. 2022, under review. [Google Scholar]
- Ata, Ş. Biyolojik, Gıda ve Çevre Örneklerinde Nitrit, Nitrat, Sekonder Amin ve Nitrozaminler. Ph.D. Thesis, Zonguldak Karaelmas University, Zonguldak, Turkey, 2010; pp. 205–214. [Google Scholar]
- Kaban, G.; Polat, Z.; Sallan, S.; Kaya, M. The occurrence of volatile N-nitrosamines in heat-treated sucuk in relation to pH, aw and residual nitrite. J. Food Sci. Technol. 2022, 59, 1748–1755. [Google Scholar] [CrossRef]
- Shalaby, A.R. Significance of biogenic amines to food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Kikugawa, K.; Kato, T. Prevention of nitrosamine formation. In Mutagens in Food: Detection and Prevention; Hayatsu, H., Ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 205–214. [Google Scholar]
- Karovicova, J.; Kohajdova, Z. Biogenic amines in food. Chem. Pap. 2005, 59, 70–79. [Google Scholar] [CrossRef]
- Halagarda, M.; Wojciak, K.M. Health and safety aspects of traditional European meat products. A review. Meat Sci. 2022, 184, 108623. [Google Scholar] [CrossRef]
- Stadnik, J. Biogenic amines in dry-cured and fermented meats. In Biogenic Amines; Origins, Biological İmportance and Human Health Implications; Stadnik, J., Ed.; Nova Science Publisher, Inc.: New York, NY, USA, 2018; pp. 243–268. [Google Scholar]
- Lorenzo, J.M.; Franco Ruiz, D.J.; Carballo, J. Biogenic Amines in Fermented Meat Products. In Fermented Meat Products: Health Aspects; Zdolec, N., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 450–473. [Google Scholar]
- Ruiz-Capillas, C.; Jimenez-Colmenero, F. Biogenic amines in meat and meat products. Crit. Rev. Food Sci. Nutr. 2004, 44, 489–499. [Google Scholar] [CrossRef]
- Parente, E.; Martuscelli, M.; Gardini, F.; Grieco, S.; Crudele, M.; Suzzi, G. Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol. 2001, 90, 882–891. [Google Scholar] [CrossRef]
- Riebroy, S.; Benjakul, S.; Visessanguan, W.; Kijrongrojana, K.; Tanaka, M. Some characteristics of commercial Som-fug produced in Thailand. Food Chem. 2004, 88, 527–535. [Google Scholar] [CrossRef]
- Miguelez-Arrizado, M.J.; Bover-Cid, S.; Vidal-Carou, M.C. Biogenic amine contents in Spanish fermented sausages of different acidification degree as a result of artisanal or industrial manufacture. J. Sci. Food Agric. 2006, 86, 549–557. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Veciana-Nogues, T.; Bover-Cid, S.; Garriga, M.; Aymerich, T.; Zanardi, E.; Vidal-Carou, M.C. Biogenic amines in traditional fermented sausages produced in selected European countries. Food Chem. 2008, 107, 912–921. [Google Scholar] [CrossRef]
- Papavergou, E.J. Biogenic amine levels in dry fermented sausages produced and sold in Greece. Procedia Food Sci. 2011, 1, 1126–1131. [Google Scholar] [CrossRef]
- Ikonic, P.; Tasic, T.; Petrovic, L.; Skaljac, S.; Jokanovic, M.; Mandic, A.; Ikonic, B. Proteolysis and biogenic amines formation during the ripening of Petrovská klobása, traditional dry-fermented sausage from Northern Serbia. Food Control 2013, 30, 69–75. [Google Scholar] [CrossRef]
- Gardini, F.; Tabanelli, G.; Lanciotti, R.; Montanari, C.; Luppi, M.; Coloretti, F.; Chiavari, C.; Grazia, L. Biogenic amine content and aromatic profile of Salama da sugo, a typical cooked fermented sausage produced in Emilia Romagna Region (Italy). Food Control 2013, 32, 638–643. [Google Scholar] [CrossRef]
- Dos Santos, L.F.L.; Marsico, E.T.; Lazaro, C.A.; Teixeira, R.; Doro, L.; Conte Junior, C.A. Evaluation of biogenic amines levels, and biochemical and microbiological characterization of Italian-type salami sold in Rio de Janeiro. Ital. J. Food Saf. 2015, 4, 4048. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, V.; Panseri, S.; Robotti, E.; Benzi, M.; Mazzucco, E.; Gosetti, F.; Frascarolo, P.; Oddone, M.; Baldizzone, M.; Marengo, E.; et al. Chemical and microbiological characterization for PDO labelling of typical east piedmont (Italy) Salami. J. Chem. 2015, 2015, 597471. [Google Scholar] [CrossRef]
- Gençcelep, H.; Kaban, G.; Kaya, M. Effects of starter cultures and nitrite levels on formation of biogenic amines in sucuk. Meat Sci. 2007, 77, 424–430. [Google Scholar] [CrossRef]
- Maijala, R.; Eerola, S. Contaminant lactic acid bacteria of dry sausages produce histamine and tyramine. Meat Sci. 1993, 35, 387–395. [Google Scholar] [CrossRef]
- Masson, F.; Talon, R.; Montel, M.C. Histamine and tyramine production by bacteria from meat products. Int. J. Food Microbiol. 1996, 32, 199–207. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Hugas, M.; Izquierdo-Pulido, M.; Vidal-Carou, M.C. Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int. J. Food Microbiol. 2001, 66, 185–189. [Google Scholar] [CrossRef]
- Hernandez-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogues, M.T.; Marine-Font, A.; Vidal-Carou, M.C. Biogenic amine and polyamine contents in meat meat products. J.Agric. Food Chem. 1997, 45, 2098–2102. [Google Scholar] [CrossRef]
- Martuscelli, M.; Crudele, M.A.; Gardini, F.; Suzzi, G. Biogenic amine formation and oxidation by Staphylococcus xylosus strains from artisanal fermented sausages. Lett. Appl. Microbiol. 2000, 31, 228–232. [Google Scholar] [CrossRef]
- Wei, F.; Xu, X.; Zhou, G.; Zhao, G.; Li, C.; Zhang, Y.; Chen, L.; Qi, J. Irradiated Chinese Rugao ham: Changes in volatile N-nitrosamine, biogenic amine and residual nitrite during ripening and post-ripening. Meat Sci. 2009, 81, 451–455. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Lehrburch der Lebensmittelchemie; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Anonymous. Commission of Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives. L295 (12/11/2011). 2011. Available online: https://op.europa.eu/en/publication-detail/-/publication/28cb4a37-b40e-11e3-86f9-01aa75ed71a1 (accessed on 1 January 2023).
- Popelka, P. Fermented Meats Composition—Health and Nutrition Aspects. In Fermented Meat Products-Health Aspects; Zdolec, N., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2016; pp. 127–166. [Google Scholar]
- Wang, X.H.; Ren, H.Y.; Liu, D.Y.; Zhu, W.Y.; Wang, W. Effects of inoculating Lactobacillus sakei starter cultures on the microbiological quality and nitrite depletion of Chinese fermented sausages. Food Control 2013, 32, 591–596. [Google Scholar] [CrossRef]
- Theiler, R.F.; Sato, K.; Aspelund, T.G.; Miller, A.F. Model system studies on N-nitrosamine formation in cured meat: The effect of curing solution ingredients. J. Food Sci. 1981, 46, 996e999. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Zhou, T.; Li, J.; Yang, J.; Chen, W. Two efficient nitrite- reducing Lactobacillus strains isolated from traditional fermented pork (Nanx Wudl) as competitive starter cultures for Chinese fermented dry sausage. Meat Sci. 2016, 121, 302–309. [Google Scholar] [CrossRef]
- Molognoni, L.; Motta, G.E.; Daguer, H.; Lindner, J.D.D. Microbial biotransformation of N-nitro-, C-nitro-, and C-nitrous-type mutagens by Lactobacillus delbrueckii subsp. bulgaricus in meat products. Food Chem. Toxicol. 2020, 136, 110964. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, L.; Yang, Q. Partial replacement of nitrite with a novel probiotic Lactobacillus plantarum on nitrate, color, biogenic amines and gel properties of Chinese fermented sausages. Food Res. Int. 2020, 137, 109351. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Wang, D.; Gao, F.; Zhang, K.; Tian, J.; Jin, Y. Research update on the impact of lactic acid bacteria on the substance metabolism, flavor, and quality characteristics of fermented meat products. Foods 2022, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Majou, D.; Christieans, S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Kuberski, S.; Libudzisz, Z. Probiotic lactic acid bacteria detoxify N-nitrosodimethylamine. Food Addit. Contam. Part A 2014, 31, 1678–1687. [Google Scholar] [CrossRef]
- Shao, X.; Xu, B.; Zhou, H.; Chen, C.; Li, P. Insight into the mechanism of decreasing N-nitrosodimethylamine by Lactobacillus pentosus R3 in a model system. Food Control 2021, 121, 107534. [Google Scholar] [CrossRef]
- Caplice, E.; Fitzgerald, G.F. Food fermentations: Role of microorganisms in food production and preservation. Int. J. Food Microbiol. 1999, 50, 131–149. [Google Scholar] [CrossRef]
- Incze, K. European Products. In Handbook of Fermented Meat and Poultry; Toldra, F., Ed.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 307–318. [Google Scholar]
- Shao, X.; Zhu, M.; Zhang, Z.; Huang, P.; Xu, B.; Chen, C.; Li, P. N-nitrosodimethylamine reduction by Lactobacillus pentosus R3 in fermented cooked sausages. Food Control 2021, 124, 107869. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sallan, S.; Yılmaz Oral, Z.F.; Kaya, M. A Review on the Role of Lactic Acid Bacteria in the Formation and Reduction of Volatile Nitrosamines in Fermented Sausages. Foods 2023, 12, 702. https://doi.org/10.3390/foods12040702
Sallan S, Yılmaz Oral ZF, Kaya M. A Review on the Role of Lactic Acid Bacteria in the Formation and Reduction of Volatile Nitrosamines in Fermented Sausages. Foods. 2023; 12(4):702. https://doi.org/10.3390/foods12040702
Chicago/Turabian StyleSallan, Selen, Zeynep Feyza Yılmaz Oral, and Mükerrem Kaya. 2023. "A Review on the Role of Lactic Acid Bacteria in the Formation and Reduction of Volatile Nitrosamines in Fermented Sausages" Foods 12, no. 4: 702. https://doi.org/10.3390/foods12040702
APA StyleSallan, S., Yılmaz Oral, Z. F., & Kaya, M. (2023). A Review on the Role of Lactic Acid Bacteria in the Formation and Reduction of Volatile Nitrosamines in Fermented Sausages. Foods, 12(4), 702. https://doi.org/10.3390/foods12040702