Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Rice Flour
2.3. Starch Extraction
2.4. Determination of Amylose Content
2.5. Morphology and Particle Size Distribution of Starch Granules
2.6. Short-Range Molecular Order
2.7. Starch Crystalline Structure
2.8. Determination of Thermal Properties
2.9. Pasting Properties, Textural Properties, and the Clarity of Starch Pastes Determination
2.10. Starch Swelling Power (SP) and Water Solubility Index (WSI)
2.11. Determination of Molecular Weight
2.12. Branch Chain-Length Distributions of Amylopectin
2.13. In Vitro Starch Digestibility
2.14. Statistical Analysis
3. Results and Discussion
3.1. Amylose Content, Morphology, and Particle Size Distribution of Starches
3.2. Crystalline Structure of Starch
3.3. Thermal Properties
3.4. SP and WSI of Starch
3.5. Pasting and Textural Properties of Starch
3.6. Starch Molecular Structure
3.7. In Vitro Digestion Properties
3.8. Correlations between Molecular Structure and Physicochemical Properties of Rice Starch
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Falade, K.O.; Semon, M.; Fadairo, O.S.; Oladunjoye, A.O.; Orou, K.K. Functional and physico-chemical properties of flours and starches of African rice cultivars. Food Hydrocoll. 2014, 39, 41–50. [Google Scholar] [CrossRef]
- Bao, J.S. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice. Cereal Foods World 2012, 57, 148–156. [Google Scholar] [CrossRef]
- Li, Q.F.; Huang, L.C.; Chu, R.; Li, J.; Jiang, M.Y.; Zhang, C.Q.; Fan, X.L.; Yu, H.X.; Gu, M.H.; Liu, Q.Q. Down-regulation of SSSII-2 gene expression results in novel low-amylose rice with soft, transparent grains. J. Agric. Food Chem. 2018, 66, 9750–9760. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Yining, Y.; Binglian, H.; Yuehan, P.; Jinsong, B. Physicochemical properties and digestibility of endosperm starches in four indica rice mutants. Carbohydr. Polym. 2018, 195, 1–8. [Google Scholar]
- Wani, A.A.; Singh, P.; Shah, M.A.; Schweiggert-Weisz, U.; Gul, K.; Wani, I.A. Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties-A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 417–436. [Google Scholar] [CrossRef]
- Wang, L.; Xie, B.; Shi, J.; Xue, S.; Deng, Q.; Wei, Y.; Tian, B. Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocoll. 2010, 24, 208–216. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, P.; Sui, Z.; Bao, J. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 2015, 172, 433–440. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, G.; Huo, Z. Physicochemical properties of indica japonica hybrid rice starch from Chinese varieties. Food Hydrocoll. 2017, 63, 356–363. [Google Scholar] [CrossRef]
- Li, N.; Guo, Y.; Zhao, S.; Kong, J.; Qiao, D.; Lin, L.; Lin, Q.; Zhang, B. Amylose content and molecular-order stability synergistically affect the digestion rate of indica rice starches. Int. J. Biol. Macromol. 2020, 144, 373–379. [Google Scholar] [CrossRef]
- Wang, L.; Gong, Y.; Li, Y.; Tian, Y. Structure and properties of soft rice starch. Int. J. Biol. Macromol. 2020, 157, 10–16. [Google Scholar] [CrossRef]
- Wang, S.; Li, P.; Yu, J.; Guo, P.; Wang, S. Multi-scale structures and functional properties of starches from Indica hybrid, Japonica and waxy rice. Int. J. Biol. Macromol. 2017, 102, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Qin, F.; Zhou, W.; Xu, B.; Chen, C.; Chen, Y.; Wang, Y.; Gu, M.; Liu, Q. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating. Food Chem. 2011, 128, 645–652. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar] [PubMed]
- Hu, W.-X.; Chen, J.; Xu, F.; Chen, L.; Zhao, J.-W. Study on crystalline, gelatinization and rheological properties of japonica rice flour as affected by starch fine structure. Int. J. Biol. Macromol. 2019, 148, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Kaur, L.; Sodhi, N.S.; Sekhon, K.S. Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. Food Chem. 2005, 89, 253–259. [Google Scholar] [CrossRef]
- Cai, J.; Man, J.; Huang, J.; Liu, Q.; Wei, W.; Wei, C. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr. Polym. 2015, 125, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Waduge, R.N.; Xu, S.; Bertoft, E.; Seetharaman, K. Exploring the surface morphology of developing wheat starch granules by using Atomic Force Microscopy. Starch-Starke 2013, 65, 398–409. [Google Scholar] [CrossRef]
- Lu, D.; Shen, X.; Cai, X.; Yan, F.; Lu, W.; Shi, Y.-C. Effects of heat stress during grain filling on the structure and thermal properties of waxy maize starch. Food Chem. 2014, 143, 313–318. [Google Scholar] [CrossRef]
- Morales-Martínez, L.E.; Bello-Pérez, L.A.; Sánchez-Rivera, M.M.; Ventura-Zapata, E.; Jiménez-Aparicio, A.R. Morphometric, Physicochemical, Thermal, and Rheological Properties of Rice (Oryza sativa L.) Cultivars Indica × Japonica. Food Nutr. Sci. 2016, 5, 271–279. [Google Scholar]
- Zeng, J.; Li, G.; Gao, H.; Ru, Z. Comparison of A and B Starch Granules from Three Wheat Varieties. Molecules 2011, 16, 10570–10591. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef] [PubMed]
- VanSoest, J.J.G.; Tournois, H.; de Wit, D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int. J. Biol. Macromol. 2002, 31, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Ratnayake, W.S. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem. 2002, 78, 489–498. [Google Scholar] [CrossRef]
- Chiotelli, E.; Le Meste, M. Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chem. 2002, 79, 286–293. [Google Scholar] [CrossRef]
- Kaur, L.; Singh, J.; McCarthy, O.J.; Singh, H. Physico-chemical, rheological and structural properties of fractionated potato starches. J. Food Eng. 2007, 82, 383–394. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Wani, A.A.; Gill, B.S.; Shivhare, U.S. Physico-chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. Int. J. Food Sci. Technol. 2010, 45, 2176–2185. [Google Scholar] [CrossRef]
- Sodhi, N.S.; Singh, N. Morphological, thermal and rheological properties of starches separated from rice cultivar’s grown in India. Food Chem. 2003, 80, 99–108. [Google Scholar] [CrossRef]
- Mohiuddin Bhat, F.; Singh Riar, C. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars. Int. J. Biol. Macromol. 2016, 92, 637–644. [Google Scholar]
- Huynh, T.D.; Shrestha, A.K.; Arcot, J. Physicochemical properties and digestibility of eleven Vietnamese rice starches with varying amylose contents. Food Funct. 2016, 7, 3599–3608. [Google Scholar] [CrossRef]
- Sang, Y.; Bean, S.; Seib, P.A.; Pedersen, J.; Shi, Y.-C. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 2008, 56, 6680–6685. [Google Scholar] [CrossRef] [PubMed]
- Arocas, A.; Sanz, T.; Fiszman, S.M. Clean label starches as thickeners in white sauces. Shearing, heating and freeze/thaw stability. Food Hydrocoll. 2009, 23, 2031–2037. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Olu-Owolabi, B.I.; Olawumi, E.K.; Lawal, O.S. Functional properties of native, physically and chemically modified breadfruit (Artocarpus artilis) starch. Ind. Crops Prod. 2005, 21, 343–351. [Google Scholar] [CrossRef]
- Gani, A.; Wani, S.M.; Masoodi, F.A.; Salim, R. Characterization of rice starches extracted from Indian cultivars. Food Sci. Technol. Int. 2013, 19, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Liu, Q.A.; Lee, L.; Wei, D.Z. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011, 25, 968–975. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food Funct. 2013, 4, 1564–1580. [Google Scholar] [CrossRef] [PubMed]
- Noda, T.; Nishiba, Y.; Sato, T.; Suda, I. Properties of starches from several low-amylose rice cultivars. Cereal Chem. 2003, 80, 193–197. [Google Scholar] [CrossRef]
- Jinsong, B.; Shengquan, S.; Mei, S.; Corke, H. Analysis of genotypic diversity in the starch physicochemical properties of nonwaxy rice: Apparent amylose content, pasting viscosity and gel texture. Starch/Staerke 2006, 58, 259–267. [Google Scholar]
- Kaur, S.; Panesar, P.S.; Bera, M.B.; Kumari, S. Physicochemical, textural, pasting, and in vitro digestion properties of some basmati and non-basmati rice cultivars. Int. J. Food Prop. 2014, 17, 1055–1066. [Google Scholar] [CrossRef]
- Sathaporn, S.; Titi Candra, S.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from different botanical sources. I. Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr. Polym. 2005, 60, 529–538. [Google Scholar]
Varieties | 99-25 | WYN | NJ 9108 | SXJ 100 | NJ 46 | DHX | Aki | |
---|---|---|---|---|---|---|---|---|
Amylose (%) | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 11.28 ± 0.18 c | 10.76 ± 0.34 b | 11.85 ± 0.41 c | 21.60 ± 0.01 e | 18.94 ± 0.19 d | |
Volume distribution | Small starch granule (<2 μm) (%) | 17.54 ± 0.05 a | 20.00 ± 0.96 bc | 21.55 ± 0.85 d | 21.12 ± 0.76 cd | 21.23 ± 0.07 cd | 16.80 ± 0.00 a | 19.37 ± 0.03 b |
Medium starch granule (2–10 μm) (%) | 75.73 ± 0.24 c | 78.11 ± 0.36 e | 73.94 ± 0.12 b | 76.78 ± 0.12 d | 76.99 ± 0.07 d | 70.63 ± 0.05 a | 76.32 ± 0.16 d | |
Large starch granule (>10 μm) (%) | 6.73 ± 0.29 c | 1.88 ± 0.60 a | 4.00 ± 0.98 b | 2.10 ± 0.63 a | 1.77 ± 0.00 a | 6.94 ± 0.03 c | 4.30 ± 0.20 b | |
D50 (μm) | 5.867 ± 0.00 d | 5.449 ± 0.02 a | 5.854 ± 0.01 d | 5.536 ± 0.02 b | 5.642 ± 0.03 c | 6.125 ± 0.01 e | 5.664 ± 0.05 c | |
D(3,2) (μm) | 3.37 ± 0.01 cd | 3.24 ± 0.02 bc | 3.02 ± 0.07 a | 3.01 ± 0.08 a | 3.00 ± 0.00 a | 3.47 ± 0.00 d | 3.17 ± 0.09 ab | |
D(4,3) (μm) | 5.67 ± 0.04 c | 5.11 ± 0.02 a | 5.45 ± 0.08 b | 5.15 ± 0.07 a | 5.21 ± 0.00 a | 5.91 ± 0.01 d | 5.41 ± 0.02 b | |
Crystal structure | Relative crystallinity (%) | 30.84 | 31.15 | 26.5 | 27.55 | 26.15 | 22.05 | 22.32 |
1047/1022 cm−1 | 0.907 ± 0.017 c | 0.892 ± 0.013 bc | 0.849 ± 0.000 ab | 0.862 ± 0.002 abc | 0.842 ± 0.011 a | 0.863 ± 0.006 abc | 0.843 ± 0.001 a | |
1022/955 cm−1 | 1.200 ± 0.049 a | 1.259 ± 0.013 b | 1.345 ± 0.023 c | 1.297 ± 0.007 bc | 1.307 ± 0.017 bc | 1.270 ± 0.019 b | 1.318 ± 0.012 bc | |
Chain-length distributions of amylopectin | DP 6–12 (%) | 26.95 ± 0.25 a | 26.93 ± 0.26 a | 31.54 ± 0.19 c | 31.78 ± 0.87 c | 31.32 ± 0.29 c | 29.56 ± 0.89 b | 29.86 ± 0.89 b |
DP 12–24 (%) | 35.26 ± 0.24 a | 36.83 ± 0.39 b | 38.19 ± 0.24 cd | 38.87 ± 0.95 d | 38.62 ± 0.30 d | 36.77 ± 0.99 b | 38.07 ± 0.99 c | |
DP 25–36 (%) | 15.54 ± 0.12 e | 16.54 ± 0.10 f | 14.01 ± 0.20 ab | 14.09 ± 0.16 b | 14.32 ± 0.18 c | 13.92 ± 0.03 a | 14.92 ± 0.03 d | |
DP ≥ 37 (%) | 11.42 ± 0.25 b | 12.36 ± 0.58 c | 11.30 ± 0.03 a | 11.27 ± 0.05 a | 11.66 ± 0.04 bc | 11.35 ± 0.20 a | 12.95 ± 0.20 d | |
Molecular weight | PDI | 2.03 ± 0.00 b | 1.89 ± 0.01 a | 2.58 ± 0.01 e | 2.16 ± 0.03 c | 2.42 ± 0.09 d | 2.22 ± 0.07 cd | 2.66 ± 0.01 f |
Mn (108 g/mol) | 2.29 ± 0.00 e | 2.34 ± 0.10 e | 1.76 ± 0.11 cd | 2.00 ± 0.24 d | 1.64 ± 0.18 c | 1.50 ± 0.16 b | 0.85 ± 0.08 a | |
Rz (nm) | 413.6 ± 0.14 b | 402.75 ± 10.25 a | 480.4 ± 1.85 e | 423.1. ± 1.37 c | 433.2 ± 0.92 d | 560.2 ± 4.53 f | 423.7 ± 3.07 c | |
ρ (g/mol/nm3) | 6.27 ± 0.01 g | 6.76 ± 0.18 f | 4.09 ± 0.12 c | 5.71 ± 0.26 e | 4.88 ± 0.08 d | 1.98 ± 0.24 a | 3.00 ± 0.11 b |
Varieties | 99-25 | WYN | NJ 9108 | SXJ 100 | NJ 46 | DHX | Aki | |
---|---|---|---|---|---|---|---|---|
Solubility properties | WSI (%) | 55.45 ± 0.39 d | 67.57 ± 2.12 e | 26.72 ± 0.77 bc | 25.97 ± 0.94 b | 24.09 ± 0.56 a | 28.53 ± 0.48 c | 29.15 ± 0.26 c |
SP (g/g) | 7.63 ± 0.46 b | 3.89 ± 0.99 a | 27.29 ± 1.20 e | 29.30 ± 1.18 f | 26.64 ± 0.95 e | 24.65 ± 0.56 d | 23.80 ± 0.43 d | |
Pasting properties | Peak viscosity (cP) | 2389 ± 9 b | 2185 ± 10 a | 3614 ± 15 e | 3962 ± 12 g | 3742 ± 24 f | 2760 ± 12 c | 3152 ± 20 d |
Hot paste viscosity (cP) | 1037 ± 10 a | 1054 ± 8 a | 1544 ± 3 b | 1698 ± 5 c | 2006 ± 7 d | 2140 ± 7 e | 1668 ± 23 c | |
Breakdown (cP) | 1352 ± 8 c | 1130 ± 9 b | 2071 ± 1 f | 2265 ± 7 g | 1736 ± 7 e | 620 ± 6 a | 1484 ± 17 d | |
Cold paste viscosity (cP) | 1439 ± 7 a | 1434 ± 4 a | 2361 ± 5 b | 2424 ± 4 c | 2818 ± 16 d | 3438 ± 8 e | 2968 ± 16 f | |
Setback (cP) | 402 ± 7 a | 379 ± 6 a | 818 ± 11 c | 726 ± 9 b | 812 ± 0 c | 1299 ± 6 d | 1300 ± 7 d | |
Peak time (min) | 3.36 ± 0.05 a | 3.73 ± 0.00 b | 5.56 ± 0.05 d | 5.13 ± 0.09 c | 5.50 ± 0.04 d | 6.20 ± 0.10 e | 5.56 ± 0.05 d | |
Pasting temperature (°C) | 67.4 ± 0.64 a | 68.6 ± 0.07 ab | 70.2 ± 0.14 cd | 69.8 ± 0.64 bc | 70.2 ± 0.04 cd | 71.8 ± 0.17 e | 71.4 ± 0.13 de | |
Thermal properties | To (°C) | 57.17 ± 0.21 c | 56.88 ± 0.52 bc | 57.55 ± 0.08 c | 56.00 ± 0.04 ab | 55.11 ± 0.22 a | 56.05 ± 0.34 ab | 56.78 ± 0.86 bc |
Tp (°C) | 63.25 ± 0.40 c | 65.10 ± 0.37 e | 64.37 ± 0.04 d | 62.91 ± 0.13 bc | 61.75 ± 0.16 a | 62.51 ± 0.26 b | 63.17 ± 0.28 c | |
Tc (°C) | 75.63 ± 1.02 c | 79.53 ± 1.07 d | 72.80 ± 0.10 b | 73.55 ± 0.82 b | 73.72 ± 0.37 b | 69.75 ± 0.45 a | 72.00 ± 0.31 b | |
Tc-To (°C) | 18.46 ± 0.12 d | 23.65 ± 0.05 e | 15.25 ± 0.08 b | 17.55 ± 0.60 c | 18.61 ± 0.20 d | 13.70 ± 0.16 a | 13.70 ± 0.06 a | |
ΔH (J/g) | 11.80 ± 0.93 d | 11.83 ± 0.42 d | 10.91 ± 0.41 bcd | 11.57 ± 0.12 cd | 10.00 ± 0.69 ab | 8.88 ± 0.04 a | 10.24 ± 0.76 abc | |
Textural properties and the clarity of starch pastes | Hardness (gf) | 118.03 ± 6.44 a | 138.92 ± 2.15 b | 233.32 ± 5.67 c | 235.14 ± 3.57 c | 231.29 ± 7.19 c | 415.9 ± 7.79 d | 362.39 ± 9.64 e |
Gumminess (gf) | 91.94 ± 5.03 a | 92.31 ± 2.60 a | 131.28 ± 6.04 b | 178.25 ± 8.7 c | 166.46 ± 7.00 c | 249.85 ± 7.94 d | 249.78 ± 9.03 d | |
Springiness | 0.83 ± 0.04 b | 0.83 ± 0.01 b | 0.76 ± 0.03 a | 0.78 ± 0.03 ab | 0.75 ± 0.02 a | 0.78 ± 0.02 ab | 0.75 ± 0.01 a | |
Transmittance (%) | 15.4 ± 0.2 bc | 16.9 ± 0.3 d | 11.8 ± 0.1 a | 18.9 ± 0.2 e | 19.4 ± 0.3 e | 15.9 ± 0.6 c | 14.9 ± 0.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Xue, W.; Li, T.; Wang, L. Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch. Foods 2023, 12, 3611. https://doi.org/10.3390/foods12193611
Zhang C, Xue W, Li T, Wang L. Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch. Foods. 2023; 12(19):3611. https://doi.org/10.3390/foods12193611
Chicago/Turabian StyleZhang, Congnan, Wei Xue, Ting Li, and Li Wang. 2023. "Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch" Foods 12, no. 19: 3611. https://doi.org/10.3390/foods12193611
APA StyleZhang, C., Xue, W., Li, T., & Wang, L. (2023). Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch. Foods, 12(19), 3611. https://doi.org/10.3390/foods12193611