Improving the Microstructural and Rheological Properties of Frozen Unfermented Wheat Dough with Laccase and Ferulic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microfarinograph Measurement
2.3. Preparation of Dough Samples
2.4. Rheological Measurement
2.5. Kieffer Rig Uniaxial Extensibility
2.6. Preparation of Gluten Solution
2.7. Microstructure of Dough
2.8. Fourier Transform Infrared Spectroscopy (FTIR)
2.9. Measurement of Total Free Sulfhydryl Content
2.10. Measurement of Intrinsic Fluorescence Spectra
2.11. Statistical Analysis
3. Results
3.1. Microfarinograph Analysis
3.2. Dynamic Rheology Properties
3.3. Tensile Properties
3.4. Microstructure of Frozen Dough
3.5. Functional Groups Vibration Analysis
3.6. Analysis of Free Sulfhydryl Content of Gluten
3.7. Analysis of Intrinsic Fluorescence Intensity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Wu, J.; Li, L.; Wang, S. The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze-thaw cycles. Eur. Food Res. Technol. 2017, 243, 1149–1156. [Google Scholar] [CrossRef]
- Zheng, K.; Chen, Z.H.; Fu, Y.; Chen, L.; Zhu, X.W.; Chen, X.; Ding, W.P. Effect of tea polyphenols on the storage stability of non-fermented frozen dough: Protein structures and state of water. Foods 2023, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Bauer, N.; Koehler, P.; Wieser, H.; Schieberle, P. Studies on effects of microbial transglutaminase on gluten proteins of wheat. II. Rheological properties. Cereal Chem. 2003, 80, 787–790. [Google Scholar] [CrossRef]
- Selinheimo, E.; Autio, K.; Kruus, K.; Buchert, J. Elucidating the mechanism of laccase and tyrosinase in wheat bread making. J. Agric. Food Chem. 2007, 55, 6357–6365. [Google Scholar] [CrossRef]
- Manhivi, V.E.; Amonsou, E.O.; Kudanga, T. Laccase-mediated crosslinking of gluten-free amadumbe flour improves rheological properties. Food Chem. 2018, 264, 157–163. [Google Scholar] [CrossRef]
- Selinheimo, E.; Kruus, K.; Buchert, J.; Hopia, A.; Autio, K. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J. Cereal Sci. 2006, 43, 152–159. [Google Scholar] [CrossRef]
- Minussi, R.C.; Pastore, G.M.; Duran, N. Potential applications of laccase in the food industry. Trends Food Sci. Technol. 2002, 13, 205–216. [Google Scholar] [CrossRef]
- McKerchar, H.J.; Clerens, S.; Dobson, R.C.J.; Dyer, J.M.; Maes, E.; Gerrard, J.A. Protein-protein crosslinking in food: Proteomic characterisation methods, consequences and applications. Trends Food Sci. Technol. 2019, 86, 217–229. [Google Scholar] [CrossRef]
- Si, J. Use of laccase in baking. Trends Food Sci. Technol. 1995, 11, 379. [Google Scholar]
- Flander, L.; Rouau, X.; Morel, M.-H.; Autio, K.; Seppänen-Laakso, T.; Kruus, K.; Buchert, J. Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J. Agric. Food Chem. 2008, 56, 5732–5742. [Google Scholar] [CrossRef]
- Primo-Martín, C.; Valera, R.; Martínez-Anaya, M.A. Effect of pentosanase and oxidases on the characteristics of doughs and the glutenin macropolymer (GMP). J. Agric. Food Chem. 2003, 51, 4673–4679. [Google Scholar] [CrossRef]
- Mattinen, M.-L.; Kruus, K.; Buchert, J.; Nielsen, J.H.; Andersen, H.J.; Steffensen, C.L. Laccase-catalyzed polymerization of tyrosine-containing peptides. FEBS J. 2005, 272, 3640–3650. [Google Scholar] [CrossRef]
- Lantto, R.; Schönberg, C.; Buchert, J.; Heine, E. Effects of laccase-mediator combinations on wool. Text. Res. J. 2004, 74, 713–717. [Google Scholar] [CrossRef]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Isaschar-Ovdat, S.; Fishman, A. Crosslinking of food proteins mediated by oxidative enzymes-A review. Trends Food Sci. Technol. 2018, 72, 134–143. [Google Scholar] [CrossRef]
- Ou, S.Y.; Kwok, K.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 2004, 84, 1261–1269. [Google Scholar] [CrossRef]
- Labat, E.; Morel, M.H.; Rouau, X. Effects of laccase and ferulic acid on wheat Flour doughs. Cereal Chem. 2000, 77, 823–828. [Google Scholar] [CrossRef]
- Figueroa-Espinoza, M.-C.; Morel, M.-H.; Rouau, X. Effect of lysine, tyrosine, cysteine, and glutathione on the oxidative cross-linking of feruloylated arabinoxylans by a fungal laccase. J. Agric. Food Chem. 1998, 46, 2583–2589. [Google Scholar] [CrossRef]
- Otte, J.; Qvist, K.B. Cross-linking of whey proteins by enzymatic oxidation. J. Agric. Food Chem. 1998, 46, 1326–1333. [Google Scholar] [CrossRef]
- Migliori, M.; Gabriele, D. Effect of pentosan addition on dough rheological properties. Food Res. Int. 2010, 43, 2315–2320. [Google Scholar] [CrossRef]
- Kieffer, R.; Wieser, H.; Henderson, M.H.; Graveland, A. Correlations of the breadmaking performance of wheat flour with rheological measurements on a micro-scale. J. Cereal Sci. 1998, 27, 53–60. [Google Scholar] [CrossRef]
- GB/T 5506.1-2008; Wheat and Wheat Flour—Gluten Content—Part 1: Determination of Wet Gluten by Manual Method. Standardization Administration of the Peoples Republic of China: Beijing, China, 2008.
- Wang, P.; Xu, L.; Nikoo, M.; Ocen, D.; Wu, F.; Yang, N.; Jin, Z.; Xu, X. Effect of frozen storage on the conformational, thermal and microscopic properties of gluten: Comparative studies on gluten-, glutenin- and gliadin-rich fractions. Food Hydrocoll. 2014, 35, 238–246. [Google Scholar] [CrossRef]
- Zhao, L.; Li, L.; Liu, G.Q.; Liu, X.X.; Li, B. Effect of frozen storage on molecular weight, size distribution and conformation of gluten by SAXS and SEC-MALLS. Molecules 2012, 17, 7169–7182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, L.; Liu, G.Q.; Chen, L.; Liu, X.X.; Zhu, J.; Li, B. Effect of freeze-thaw cycles on the molecular weight and size distribution of gluten. Food Res. Int. 2013, 53, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Kim, Y. Application of yuba film as frozen dumpling wrappers. LWT-Food Sci. Technol. 2021, 151, 112245. [Google Scholar] [CrossRef]
- Liu, R.; Shi, C.; Song, Y.; Wu, T.; Zhang, M. Impact of oligomeric procyanidins on wheat gluten microstructure and physicochemical properties. Food Chem. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Wang, P.; Zou, M.; Gu, Z.; Yang, R. Heat-induced polymerization behavior variation of frozen-stored gluten. Food Chem. 2018, 255, 242–251. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Guan, X. Effects of adding quinoa flour on the composite wheat dough: A comprehensive analysis of the pasting, farinograph and rheological properties. Int. J. Food Sci. Technol. 2022, 57, 7099–7106. [Google Scholar] [CrossRef]
- Yang, S.; Jeong, S.; Lee, S. Elucidation of rheological properties and baking performance of frozen doughs under different thawing conditions. J. Food Eng. 2020, 284, 110084. [Google Scholar] [CrossRef]
- Jiao, W.; Li, L.; Fan, P.; Zhao, D.; Li, B.; Rong, H.; Zhang, X. Effect of xanthan gum on the freeze-thaw stability of wheat gluten. Food Biophys. 2019, 14, 142–153. [Google Scholar] [CrossRef]
- Cui, T.; Liu, R.; Wu, T.; Sui, W.; Zhang, M. Influence of konjac glucomannan and frozen storage on rheological and tensile properties of frozen dough. Polymers 2019, 11, 794. [Google Scholar] [CrossRef] [Green Version]
- Angioloni, A.; Balestra, F.; Pinnavaia, G.G.; Rosa, M.D. Small and large deformation tests for the evaluation of frozen dough viscoelastic behaviour. J. Food Eng. 2008, 87, 527–531. [Google Scholar] [CrossRef]
- Wang, M.; van Vliet, T.; Hamer, R.J. How gluten properties are affected by pentosans. J. Cereal Sci. 2004, 39, 395–402. [Google Scholar] [CrossRef]
- Yi, J.; Kerr, W.L. Combined effects of freezing rate, storage temperature and time on bread dough and baking properties. LWT-Food Sci. Technol. 2009, 42, 1474–1483. [Google Scholar] [CrossRef]
- Li, J.H.; Yang, N.; Tang, J.; Gui, Y.F.; Zhu, Y.; Guo, L.; Cui, B. The characterization of structural, thermal, pasting and gel properties of the blends of laccase- and tyrosinase-treated potato protein and starch. LWT-Food Sci. Technol. 2022, 153, 112463. [Google Scholar] [CrossRef]
- Gui, Y.F.; Li, J.H.; Zhu, Y.; Guo, L. Roles of four enzyme crosslinks on structural, thermal and gel properties of potato proteins. LWT-Food Sci. Technol. 2020, 123, 109116. [Google Scholar] [CrossRef]
- Zhou, F.Z.; Yan, L.; Yin, S.W.; Tang, C.H.; Yang, X.Q. Development of pickering emulsions stabilized by gliadin/proanthocyanidins hybrid particles (GPHPs) and the fate of lipid oxidation and digestion. J. Agric. Food Chem. 2018, 66, 1461–1471. [Google Scholar] [CrossRef]
- Marquez-Escalante, J.A.; Carvajal-Millan, E. Feruloylated arabinoxylans from maize distiller’s dried grains with solubles: Effect of feruloyl esterase on their macromolecular characteristics, gelling, and antioxidant properties. Sustainability 2019, 11, 6449. [Google Scholar] [CrossRef] [Green Version]
- Han, K.X.; Gao, J.B.; Wei, W.; Zhu, Q.M.; Fersht, V.; Zhang, M. Laccase-induced wheat bran arabinoxylan hydrogels from different wheat cultivars: Structural, physicochemical, and rheological characteristics. J. Food Process. Preserv. 2022, 46, e16394. [Google Scholar] [CrossRef]
- Martínez-López, A.L.; Carvajal-Millan, E.; Marquez-Escalante, J.; Campa-Mada, A.C.; Rascón-Chu, A.; López-Franco, Y.L.; Lizardi-Mendoza, J. Enzymatic cross-linking of ferulated arabinoxylan: Effect of laccase or peroxidase catalysis on the gel characteristics. Food Sci. Biotechnol. 2019, 28, 311–318. [Google Scholar] [CrossRef]
- Carvajal-Millan, E.; Guigliarelli, B.; Belle, V.; Rouau, X.; Micard, V. Storage stability of laccase induced arabinoxylan gels. Carbohydr. Polym. 2005, 59, 181–188. [Google Scholar] [CrossRef]
- Snelders, J.; Dornez, E.; Delcour, J.A.; Courtin, C.M. Impact of wheat bran derived arabinoxylanoligosaccharides and associated ferulic acid on dough and bread properties. J. Agric. Food Chem. 2014, 62, 7190–7199. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tao, H.; Jin, Z.Y.; Xu, X.M. Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality. Food Chem. 2016, 200, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Han, H.M.; Koh, B.-K. Effect of phenolic acids on the rheological properties and proteins of hard wheat flour dough and bread. J. Sci. Food Agric. 2011, 91, 2495–2499. [Google Scholar] [CrossRef] [PubMed]
- Koh, B.-K.; Ng, P.K.W. Effects of ferulic acid and transglutaminase on hard wheat flour dough and bread. Cereal Chem. 2009, 86, 18–22. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, X.; Zhang, H.; Wang, J. Interactions between dietary fiber and ferulic acid changed the aggregation of gluten in a whole wheat model system. LWT-Food Sci. Technol. 2018, 91, 55–62. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, M.; Xia, N.; Teng, J.; Jia, C.; Wei, B.; Huang, L.; Chen, D. Interaction between plant phenolics and rice protein improved oxidative stabilities of emulsion. J. Cereal Sci. 2019, 89, 102818. [Google Scholar] [CrossRef]
- Ojha, H.; Mishra, K.; Hassan, M.I.; Chaudhury, N.K. Spectroscopic and isothermal titration calorimetry studies of binding interaction of ferulic acid with bovine serum albumin. Thermochim. Acta 2012, 548, 56–64. [Google Scholar] [CrossRef]
- Wang, K.Q.; Luo, S.Z.; Zhong, X.Y.; Cai, J.; Jiang, S.T.; Zheng, Z. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation. Food Chem. 2017, 214, 393–399. [Google Scholar] [CrossRef]
Samples | Water Absorption (%) | Development Time (min) | Stability Time (min) | Softening Degree (FU) |
---|---|---|---|---|
Control | 59.8 ± 1.1 a | 1.3 ± 0.1 b | 2.3 ± 0.1 b | 147.4 ± 3.5 c |
FA | 58.8 ± 0.4 a | 1.3 ± 0.1 b | 2.0 ± 0.1 b | 204.9 ± 0.0 a |
LAC | 60.5 ± 0.0 a | 1.9 ± 0.0 a | 3.7 ± 0.2 a | 132.5 ± 10.5 c |
LAC + FA | 60.0 ± 2.1 a | 2.0 ± 0.3 a | 2.5 ± 0.4 b | 167.4 ± 3.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, N.; Pan, Z.; Li, L.; Zhang, X.; Yuan, Y.; Yang, Y.; Han, S.; Li, B. Improving the Microstructural and Rheological Properties of Frozen Unfermented Wheat Dough with Laccase and Ferulic Acid. Foods 2023, 12, 2772. https://doi.org/10.3390/foods12142772
He N, Pan Z, Li L, Zhang X, Yuan Y, Yang Y, Han S, Li B. Improving the Microstructural and Rheological Properties of Frozen Unfermented Wheat Dough with Laccase and Ferulic Acid. Foods. 2023; 12(14):2772. https://doi.org/10.3390/foods12142772
Chicago/Turabian StyleHe, Ni, Zhiqin Pan, Lin Li, Xia Zhang, Yi Yuan, Yipeng Yang, Shuangyan Han, and Bing Li. 2023. "Improving the Microstructural and Rheological Properties of Frozen Unfermented Wheat Dough with Laccase and Ferulic Acid" Foods 12, no. 14: 2772. https://doi.org/10.3390/foods12142772
APA StyleHe, N., Pan, Z., Li, L., Zhang, X., Yuan, Y., Yang, Y., Han, S., & Li, B. (2023). Improving the Microstructural and Rheological Properties of Frozen Unfermented Wheat Dough with Laccase and Ferulic Acid. Foods, 12(14), 2772. https://doi.org/10.3390/foods12142772