Improvement in the Stability and Bioaccessibility of Carotenoid and Carotenoid Esters from a Papaya By-Product Using O/W Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Standards, and Reagents
2.2. Papaya By-Product
2.3. Carotenoid Extraction from Freeze-Dried Papaya Peel
2.4. Preparation of Papaya By-Product Carotenoid O/W Microemulsions
2.5. Characterization of O/W Microemulsions
2.5.1. Particle Size and Zeta Potential
2.5.2. Microstructure of O/W Carotenoid Microemulsions and In Vitro Gastrointestinal Digestion Phases
2.6. Viscosity
2.7. Measurement of Encapsulation Rate
2.8. Carotenoid Extraction from O/W Microemulsions
2.9. Characterization and Quantification of Carotenoids from Papaya Peel (By-Product)
2.9.1. Analysis of Carotenoids using HPLC
2.9.2. Analysis of Total Carotenoids through Spectrophotometry
2.10. Bioaccessibility Study of Papaya Carotenoid Extracts Encapsulated by O/W Microemulsions
2.10.1. In Vitro Gastrointestinal Digestion Assay
2.10.2. Carotenoid Extraction from In Vitro Digestion Phases
2.11. Statistical Analysis
3. Results and Discussion
3.1. O/W Papaya Carotenoid Microemulsion Optimization Process
3.2. Physicochemical Characterization
3.2.1. Particle Size
3.2.2. Electrical Charge
3.2.3. Encapsulation Efficiency
3.3. Behavior of the Papaya Carotenoid O/W Emulsions during In Vitro Gastrointestinal Digestion
3.3.1. Particle Size
3.3.2. Electrical Charge
3.3.3. Carotenoid Stability and Bioaccessibility in O/W Microemulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sancho, L.E.G.G.; Yahia, E.M.; González-Aguilar, G.A. Identification and quantification of phenols, carotenoids, and vitamin C from papaya (Carica papaya L., cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI. Food Res. Intern. 2011, 44, 1284–1291. [Google Scholar] [CrossRef]
- Schweiggert, R.M.; Steingass, C.B.; Heller, A.; Esquivel, P.; Carle, R. Characterization of chromoplasts and carotenoids of red-and yellow-fleshed papaya (Carica papaya L.). Planta 2011, 234, 1031–1044. [Google Scholar] [CrossRef]
- Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Cano, M.P. Carotenoid and carotenoid ester profile and their deposition in plastids in fruits of new papaya (Carica papaya L.) varieties from the Canary Islands. Foods 2021, 10, 434. [Google Scholar] [CrossRef]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Atencio, S.; Verkempinck, S.H.; Reineke, K.; Hendrickx, M.; Van Loey, A. Heat and Light Stability of Pumpkin-Based Carotenoids in a Photosensitive Food: A Carotenoid-Coloured Beverage. Foods 2022, 11, 485. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Metabolic fate of bioaccessible and non-bioaccessible carotenoids. Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health. In Book Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; Royal Society of Chemistry: London, UK, 2018; pp. 165–200. [Google Scholar]
- Lara-Abia, S.; Welti-Chanes, J.; Cano, M.P. Effect of High Hydrostatic Pressure on the Extractability and Bioaccessibility of Carotenoids and Their Esters from Papaya (Carica papaya L.) and Its Impact on Tissue Microstructure. Foods 2021, 10, 2435. [Google Scholar] [CrossRef]
- Tan, C.; McClements, D.J. Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation. Foods 2021, 10, 812. [Google Scholar] [CrossRef]
- Xavier, A.A.O.; Mercadante, A.Z.; Garrido-Fernandez, J.; Perez-Galvez, A. Fat content affects bioaccessibility and efficiency of enzymatic hydrolysis of lutein esters added to milk and yogurt. Food Res. Intern. 2014, 65, 171–176. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Nuño-Escobar, B.; Welti-Chanes, J.; Cano, M.P. In Vitro bioaccessibility of individual carotenoids from persimmon (Diospyros kaki, cv. Rojo Brillante) used as an ingredient in a model diary food. J. Sci. Food Agric. 2018, 98, 3246–3254. [Google Scholar] [CrossRef]
- Verkempinck, S.H.E.; Salvia-Trujillo, L.; Moens, L.G.; Carrillo, C.; Van Loey, A.M.; Hendrickx, M.E.; Grauwet, T. Kinetic approach to study the relation between In Vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree. J. Func. Foods 2018, 41, 135–147. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, X.; McClements, D.J.; Cao, Y.; Xiao, H. Enhancement of phytochemical bioaccessibility from plant-based foods using excipient emulsions: Impact of lipid type on carotenoid solubilization from spinach. Food Funct. 2018, 9, 4352–4365. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Paz, B.; de Jesús Ornelas-Paz, J.; Ruiz-Cruz, S.; Rios-Velasco, C.; Ibarra-Junquera, V.; Yahia, E.M.; Gardea-Béjar, A.A. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review. Food Res. Intern. 2017, 99, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Teixé-Roig, J.; Oms-Oliu, G.; Ballesté-Muñoz, S.; Odriozola-Serrano, I.; Martín-Belloso, O. Improving the In Vitro Bioaccessibility of β-Carotene Using Pectin Added Nanoemulsions. Foods 2020, 9, 447. [Google Scholar] [CrossRef]
- Jain, S.; Winuprasith, T.; Suphantharika, M. Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydroc. 2020, 104, 105730. [Google Scholar] [CrossRef]
- Zhao, C.; Wei, L.; Yin, B.; Liu, F.; Li, J.; Liu, X.; Wang, J.; Wang, Y. Encapsulation of lycopene within oil-in-water nanoemulsions using lactoferrin: Impact of carrier oils on physicochemical stability and bioaccessibility. Inter. J. Biol. Macrom. 2020, 153, 912–920. [Google Scholar] [CrossRef]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Cano, M.P.; Gómez-Maqueo, A.; Fernández-López, R.; Welti-Chanes, J.; García-Cayuela, T. Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante). Food Res. Intern. 2019, 123, 538–549. [Google Scholar] [CrossRef]
- Jaeger de Carvalho, L.M.; Barros Gomes, P.; Luiz de Oliveira Godoy, R.; Pacheco, S.; Fernandes do Monte, P.H.; Viana de Carvalho, J.L.; Regini Nutti, M.; Lima Neves, A.C.; Rodrigues Alves Vieira, A.C.; Ramalho Ramos, S.R. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Intern. 2011, 47, 337–340. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Brodkorb, A. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Eriksen, J.N.; Luu, A.Y.; Dragsted, L.O.; Arrigoni, E. Adaption of an in vitro digestion method to screen carotenoid liberation and In Vitro accessibility from differently processed spinach preparations. Food Chem. 2017, 224, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Petry, F.C.; Mercadante, A.Z. Impact of in vitro digestion phases on the stability and bioaccessibility of carotenoids and their esters in mandarin pulps. Food Funct. 2017, 8, 3951–3963. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, Z.; Cao, C.; Liu, Y. The partial coalescence behavior of oil-in-water emulsions: Comparison between refrigerated and room temperature storage. Food Chem. 2019, 300, 125219. [Google Scholar] [CrossRef] [PubMed]
- Ngouémazong, E.D.; Christiaens, S.; Shpigelman, A.; Van Loey, A.; Hendrickx, M. The emulsifying and emulsion-stabilizing properties of pectin: A review. Compreh. Rev. Food Sci. Food Saf. 2015, 14, 705–718. [Google Scholar] [CrossRef]
- Maa, Y.F.; Hsu, C.C. Performance of sonication and microfluidization for liquid–liquid emulsification. Pharmac. Develop. Techn. 1999, 4, 233–240. [Google Scholar] [CrossRef]
- Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydroc. 2011, 25, 1000–1008. [Google Scholar] [CrossRef]
- Mun, S.; Decker, E.A.; McClements, D.J. Influence of emulsifier type on In Vitro digestibility of lipid droplets by pancreatic lipase. Food Res. Intern. 2007, 40, 770–781. [Google Scholar] [CrossRef]
- Chiu, Y.T.; Chiu, C.P.; Chien, J.T.; Ho, G.H.; Yang, J.; Chen, B.H. Encapsulation of Lycopene Extract from Tomato Pulp Waste with Gelatin and Poly(γ-glutamic acid) as Carrier. J. Agric. Food Chem. 2007, 55, 5123–5130. [Google Scholar] [CrossRef]
- Brito-Oliveira, T.C.; Molina, C.V.; Netto, F.M.; Pinho, S.C. Encapsulation of Beta-carotene in Lipid Microparticles Stabilized with Hydrolyzed Soy Protein Isolate: Production Parameters, Alpha-tocopherol Coencapsulation and Stability Under Stress Conditions. J. Food Sci. 2017, 82, 659–669. [Google Scholar] [CrossRef]
- Chang, Y.; McClements, D.J. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydroc. 2016, 61, 92–101. [Google Scholar] [CrossRef]
High Speed Homogenization Conditions | Parameter | |||
---|---|---|---|---|
Particle Diameter D (v, 0.5) (μm) | Viscosity (mPa.s) | ζ-Potential (mV) | ||
Coarse emulsion | 9500 rpm | 10.6 ± 0.1 b | 21.9 ± 0.2 c | −43.1 ± 1.1 c |
2 min/2% pectin concentration | 12,000 rpm | 8.0 ± 0.1 b | 22.0 ± 1.2 c | −41.9 ± 0.6 c |
14,000 rpm | 7.2 ± 0.1 b | 22.0 ± 1.5 c | −42.0 ± 0.2 c | |
16,000 rpm | 5.8 ± 0.1 b | 21.4 ± 0.9 c | −32.6 ± 1.2 b | |
2 min | 8.0 ± 0.1 b | 14.8 ± 0.3 b | −37.0 ± 0.4 b | |
12,000 rpm/2% pectin concentration | 3 min | 9.5 ± 0.8 b | 14.9 ± 1.0 b | −35.7 ± 0.2 b |
4 min | 9.0 ± 0.5 b | 14.4 ± 0.2 b | −33.1 ± 1.8 b | |
5 min | 6.0 ± 0.1 b | 13.2 ± 0.5 b | −31.8 ± 3.1 b | |
1% pectin concentration | 8.2 ± 0.2 b | 5.7 ± 0.3 a | −40.4 ± 1.6 c | |
12,000 rpm/2 min | 2% pectin concentration | 8.0 ± 0.1 b | 20.9 ± 1.3 c | −36.5 ± 1.4 b |
Final Emulsion | 3% pectin concentration | 4.6 ± 0.0 b | 48.8 ± 1.9 d | −27.8 ± 0.5 a |
HPH treatment at 100 MPa/5 cycles 1 | 0.5 ± 0.0 a | 7.3 ± 0.2 a | −26.8 ± 0.2 a |
High-Speed Homogenization (12,000 rpm/2 min) | HPH (100 MPa/5 Cycles) | |||||
---|---|---|---|---|---|---|
Parameter | Pectin Concentration | Pectin Concentration | ||||
1% | 2% | 3% | 1% | 2% | 3% | |
Viscosity (mPa.s) | 5.4 ± 0.0 b | 5.4 ± 0.0 b | 5.5 ± 0.0 b | 4.8 ± 0.0 a | 5.7 ± 0.4 b | 5.5 ± 0.0 b |
ζ-potential (mV) | −35.0 ± 2.5 d | −24.8 ± 0.7 c | −15.6 ± 0.2 a | −19.8 ± 0.9 b | −18.1 ± 1.2 b | −19.9 ± 1.9 b |
Particle diameter D (v, 0.5) (µm) | 11.2 ± 0.2 d | 8.0 ± 0.1 c | 3.1 ± 0.1 b | 0.5 ± 0.0 a | 0.4 ± 0.0 a | 0.6 ± 0.0 a |
Parameter | O/W Soybean Emulsion | O/W Sunflower Emulsion |
---|---|---|
Particle diameter D (v, 0.5) | 0.6 ± 0.0 a | 0.4 ± 0.0 b |
Viscosity (mPa.s) | 5.3 ± 0.0 a | 6.2 ± 0.1 b |
ζ-potential (mV) | −25.7 ± 1.0 a | −26.5 ± 1.3 a |
Encapsulation efficiency (%) | 91.0 ± 0.01 a | 92.2 ± 0.0 a |
O/W Soybean Emulsion | O/W Sunflower Emulsion | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Carotenoid | Stability (µg/g Emulsion) during In Vitro Digestion | Stability (µg/g Emulsion) during In Vitro Digestion | ||||||||
Oil Extract | Oral | Gastric | Intestinal | Bioaccessibility (%) | Oil Extract | Oral | Gastric | Intestinal | Bioaccessibility (%) | |
(all-E)-β- Cryptoxanthin | 0.34 ± 0.0 b | 0.47 ± 0.0 c | 0.26 ± 0.0 b | 0.12 ± 0.0 a | 15.4 ± 0.4 A | 0.23 ± 0.0 a | 0.76 ± 0.0 b | 0.56 ± 0.0 c | 0.33 ± 0.0 b | 15.0 ± 0.2 A |
(all-E)-β- Cryptoxanthin laurate | 2.60 ± 0.1 b | 2.79 ± 0.1 b | 2.28 ± 0.0 b | 0.82 ± 0.0 a | 3.5 ± 0.1 A | 1.92 ± 0.0 a | 2.36 ± 0.1 b | 2.99 ± 0.3 b | 0.98 ± 0.0 a | 7.2 ± 0.9 B |
(all-E)-β- Carotene | 0.82 ± 0.0 a | 1.19 ± 0.0 b | 1.56 ± 0.0 b | 1.57 ± 0.0 b | 17.9 ± 0.7 A | 0.77 ± 0.0 a | 1.37 ± 0.0 b | 0.77 ± 0.0 a | 0.19 ± 0.1 a | 18.4 ± 0.4 A |
(all-E)-β- Lycopene | 3.82 ± 0.3 b | 7.14 ± 0.1 c | 1.58 ± 0.0 b | 1.58 ± 0.0 b | 64.1 ± 3.7 A | 3.80 ± 0.2 b | 8.05 ± 0.1 c | 3.75 ± 0.0 b | 0.94 ± 0.0 a | 71.4 ± 3.9 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Abia, S.; Lobo, G.; Pérez-Pascual, N.; Welti-Chanes, J.; Cano, M.P. Improvement in the Stability and Bioaccessibility of Carotenoid and Carotenoid Esters from a Papaya By-Product Using O/W Emulsions. Foods 2023, 12, 2654. https://doi.org/10.3390/foods12142654
Lara-Abia S, Lobo G, Pérez-Pascual N, Welti-Chanes J, Cano MP. Improvement in the Stability and Bioaccessibility of Carotenoid and Carotenoid Esters from a Papaya By-Product Using O/W Emulsions. Foods. 2023; 12(14):2654. https://doi.org/10.3390/foods12142654
Chicago/Turabian StyleLara-Abia, Sara, Gloria Lobo, Noelia Pérez-Pascual, Jorge Welti-Chanes, and M. Pilar Cano. 2023. "Improvement in the Stability and Bioaccessibility of Carotenoid and Carotenoid Esters from a Papaya By-Product Using O/W Emulsions" Foods 12, no. 14: 2654. https://doi.org/10.3390/foods12142654
APA StyleLara-Abia, S., Lobo, G., Pérez-Pascual, N., Welti-Chanes, J., & Cano, M. P. (2023). Improvement in the Stability and Bioaccessibility of Carotenoid and Carotenoid Esters from a Papaya By-Product Using O/W Emulsions. Foods, 12(14), 2654. https://doi.org/10.3390/foods12142654