Biochemical Mechanism of Fresh-Cut Lotus (Nelumbo nucifera Gaertn.) Root with Exogenous Melatonin Treatment by Multiomics Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Treatments
2.2. Appearance Quality
2.3. Weight Loss, Total Soluble Solid Content, and Vitamin C (VC) Content Evaluated
2.4. Total Bacterial Count, Total Phenol Content, and the Activity of PAL, SOD, and CAT Measurement
2.5. Gas Headspace Analysis, Soluble Quinone Content, MDA Content and ROS Production
2.6. Multiomics Analyses of Exogenous Melatonin Treatment
2.7. Quantitative Real-Time PCR Validation of RNA-Seq Data
2.8. Statistical Analysis
3. Results and Discussion
3.1. Exogenous Melatonin Treatment on Fresh-Cut Lotus Root Slice Retard Browning
3.2. Exogenous Melatonin Treatment Inhibited the Oxidation of Phenolic Compounds
3.3. Melatonin Application Increased the Antioxidant Capacity of Fresh-Cut Lotus Root Slices
3.4. Melatonin Treatment Reduced the Microorganism Proliferation on the Fresh-Cut Lotus Roots
3.5. Transcriptomic Profiling of the Effect of Exogenous Melatonin Treatment on Fresh-Cut Lotus Roots
3.6. Metabolomics Changes of the Fresh-Cut Lotus Roots Treated with Exogenous Melatonin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliveira, M.; Abadias, M.; Usall, J.; Torres, R.; Teixidó, N.; Viñas, I. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables–A review. Trends Food Sci Tech. 2015, 46, 13–26. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Lu, Y.Z.; Yang, Q.; Li, Y.; Deng, X.D.; Liu, Y.; Du, X.R.; Qiao, L.P.; Zheng, X. Effect of high oxygen pretreatment of whole tuber on anti-browning of fresh-cut potato slices during storage. Food Chem. 2019, 301, 125287. [Google Scholar] [CrossRef]
- Du, J.H.; Fu, Y.C.; Wang, N.Y. Effects of aqueous chlorine dioxide treatment on browning of fresh-cut lotus root. LWT-Food Sci. Technol. 2009, 42, 654–659. [Google Scholar] [CrossRef]
- Gao, H.; Chai, H.K.; Cheng, N.; Cao, W. Effects of 24-epibrassinolide on enzymatic browning and antioxidant activity of fresh-cut lotus root slices. Food Chem. 2017, 17, 45–51. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Zeng, T.; Nie, Q.X.; Zhang, F.; Zhu, L.Q. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Food Chem. 2015, 177, 376–381. [Google Scholar] [CrossRef]
- Min, T.; Xie, J.; Zheng, M.L.; Yi, Y.; Hou, W.F.; Wang, L.M.; Ai, Y.W.; Wang, H.X. The effect of different temperatures on browning incidence and phenol compound metabolism in fresh-cut lotus (Nelumbo nucifera G.) root. Postharvest Biol. Tec. 2017, 123, 69–76. [Google Scholar] [CrossRef]
- Sun, J.Z.; Lin, H.T.; Zhang, S.; Lin, Y.F.; Wang, H.; Lin, M.S.; Hung, Y.C.; Chen, Y.H. The roles of ROS production-scavenging system in Lasiodiplodia theobromae (Pat.) Griff. & Maubl. induced pericarp browning and disease development of harvested longan fruit. Food Chem. 2018, 247, 16–22. [Google Scholar]
- Zhou, Q.; Chen, C.; Zhou, F.H.; Hu, W.Z.; Zhao, L.; Xu, Y.Y. Correlation between enzymatic browning inhibition by UV-C treatment and reactive oxygen species metabolism of fresh-cut apples. Food Sci. 2019, 40, 102–109. [Google Scholar]
- Xie, Y.J.; Xu, D.K.; Cui, W.; Shen, W.B. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. Exp. Bot. 2012, 63, 3869–3883. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Khan, A.S.; Anjum, M.A.; Nawaz, A.; Naz, S.; Ejaz, S.; Hussain, S. Effect of postharvest oxalic acid application on enzymatic browning and quality of lotus (Nelumbo nucifera Gaertn.) root slices. Food Chem. 2020, 312, 126051. [Google Scholar] [CrossRef]
- Min, T.; Niu, L.F.; Xie, J.; Yi, Y.; Wang, L.M.; Ai, Y.W.; Wang, H.X. Effects of vacuum packaging on NAC gene expression in fresh-cut lotus root. Am. soc. Hortic. Sci. 2020, 145, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.C.; Niu, L.F.; Yi, Y.; Wang, L.M.; Ai, Y.W.; Zhao, Y.; Wang, H.X.; Min, T. Expression analysis of ERFs during storage under modified atmosphere packaging (High-concentration of CO2) of fresh-cut lotus root. Hortscience 2020, 55, 216–223. [Google Scholar] [CrossRef]
- Wang, D.; Chen, L.K.; Ma, Y.; Zhang, M.; Zhao, Y.W.; Zhao, X.Y. Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root. Food Chem. 2019, 278, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Cipolla-Neto, J.; Amaral, F.G.; Afeche, S.C. Melatonin, energy metabolism, and obesity: A review. Pineal Res. 2014, 56, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Posmyk, M.M.; Janas, K.M. Melatonin in plants. Acta Physiol. Plant. 2009, 31, 1–11. [Google Scholar] [CrossRef]
- Liu, C.H.; Zheng, H.H.; Sheng, K.L.; Liu, W.; Zheng, L. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biol. Tec. 2018, 139, 47–55. [Google Scholar] [CrossRef]
- Wolf, K.; Kolář, J.; Witters, E.; Dongen, W.; Onckelen, H.; Macháčková, I. Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. Plant Physiol. 2001, 158, 1491–1493. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zhao, B.; Zhang, H.J.; Weeda, S.; Yang, C.; Yang, Z.C.; Ren, S.X.; Guo, Y.D. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Pineal. Res. 2012, 54, 15–23. [Google Scholar] [CrossRef]
- Meng, J.F.; Xu, T.F.; Song, C.Z.; Yu, Y.; Hu, F.; Zhang, L.; Zhang, Z.W.; Xi, Z.M. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chem. 2015, 185, 127–134. [Google Scholar] [CrossRef]
- Hu, W.; Yang, H.; Tie, W.W.; Yan, Y.; Ding, Z.H.; Liu, Y.; Wu, C.L.; Wang, J.S.; Reiter, R.J.; Tan, D.X.; et al. Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality. Agr. Food Chem. 2017, 65, 9987–9994. [Google Scholar] [CrossRef]
- Zheng, H.H.; Liu, W.; Liu, S.; Liu, C.X.; Zheng, L. Effects of melatonin treatment on the enzymatic browning and nutritional quality of fresh-cut pear fruit. Food Chem. 2019, 299, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aghdam, M.S.; Fard, J.R. Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria× anannasa cv. Selva) by enhancing GABA shunt activity. Food Chem. 2017, 221, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.L.; Hu, H.L.; Luo, S.F.; Wu, Z.X.; Li, P.X. Melatonin delaying senescence of postharvest broccoli by regulating respiratory metabolism and antioxidant activity. T Chin. Soc. Agr. Eng. 2018, 34, 300–308. [Google Scholar]
- Gao, H.; Zhang, Z.K.; Chai, H.K.; Cheng, N.; Yang, Y.; Wang, D.N.; Yang, T.; Cao, W. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Tec. 2016, 18, 103–110. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.S.; Malik, A.U.; Shahid, M. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits. Food Chem. 2016, 206, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Jannatizadeh, A. Exogenous melatonin applying confers chilling tolerance in pomegranate fruit during cold storage. Sci. Hortic-Amsterdam 2019, 246, 544–549. [Google Scholar] [CrossRef]
- Yang, Q.Z.; Zhang, X.P.; Wang, F.; Zhao, Q.F. Effect of pressurized argon combined with controlled atmosphere on the postharvest quality and browning of sweet cherries. Postharvest Biol. Tec. 2019, 147, 59–67. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Luo, Z.; Li, L.; Jannatizadeh, A.; Fard, J.R.; Pirzad, F. Melatonin treatment maintains nutraceutical properties of pomegranate fruits during cold storage. Food Chem. 2020, 303, 125385. [Google Scholar] [CrossRef]
- Rastegar, S.; Khankahdani, H.H.; Rahimzadeh, M. Effects of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage. Sci. Hortic. 2020, 259, 108835. [Google Scholar] [CrossRef]
- Martínez-Ortiz, M.H.; Palma-Rodríguez, H.M.; Montalvo-González, E.; Sáyago-Ayerdi, S.G.; Utrilla-Coello, R.; Vargas-Torres, A. Effect of using microencapsulated ascorbic acid in coatings based on resistant starch chayotextle on the quality of guava fruit. Sci. Hortic. 2019, 256, 108604. [Google Scholar] [CrossRef]
- Chen, C.; Hu, W.Z.; He, Y.B.; Jiang, A.L.; Zhang, R.D. Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biol. Tec. 2016, 111, 126–131. [Google Scholar] [CrossRef]
- Klaus, A.; Heribert, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, T.; Lu, K.; Chen, J.; Niu, L.; Lin, Q.; Yi, Y.; Hou, W.; Ai, Y.; Wang, H. Biochemical Mechanism of Fresh-Cut Lotus (Nelumbo nucifera Gaertn.) Root with Exogenous Melatonin Treatment by Multiomics Analysis. Foods 2023, 12, 44. https://doi.org/10.3390/foods12010044
Min T, Lu K, Chen J, Niu L, Lin Q, Yi Y, Hou W, Ai Y, Wang H. Biochemical Mechanism of Fresh-Cut Lotus (Nelumbo nucifera Gaertn.) Root with Exogenous Melatonin Treatment by Multiomics Analysis. Foods. 2023; 12(1):44. https://doi.org/10.3390/foods12010044
Chicago/Turabian StyleMin, Ting, Keyan Lu, Jinhui Chen, Lifang Niu, Qiong Lin, Yang Yi, Wenfu Hou, Youwei Ai, and Hongxun Wang. 2023. "Biochemical Mechanism of Fresh-Cut Lotus (Nelumbo nucifera Gaertn.) Root with Exogenous Melatonin Treatment by Multiomics Analysis" Foods 12, no. 1: 44. https://doi.org/10.3390/foods12010044
APA StyleMin, T., Lu, K., Chen, J., Niu, L., Lin, Q., Yi, Y., Hou, W., Ai, Y., & Wang, H. (2023). Biochemical Mechanism of Fresh-Cut Lotus (Nelumbo nucifera Gaertn.) Root with Exogenous Melatonin Treatment by Multiomics Analysis. Foods, 12(1), 44. https://doi.org/10.3390/foods12010044