Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. HS-SPME
2.3. GC-MS Analysis
2.4. Relative Odor Activity Value (ROAV)
2.5. E-Nose Analysis
2.6. E-Tongue Analysis
2.7. Statistical Analysis
3. Results
3.1. VOCs in Defatted Tiger Nut Flour
3.2. Heat Map Analysis of Volatile Flavor Compounds in Defatted Tiger Nut Flour
3.3. Relative Odor Activity Value (ROAV)
3.4. E-Nose Analysis of Defatted Tiger Nut Flour
3.5. E-Tongue Analysis of Defatted Tiger Nut Flour
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sensor | General Description | |
---|---|---|
S1 | W1C | Sensitive to aromatic compounds, benzene |
S2 | W5S | Highly sensitive to nitrogen oxides |
S3 | W3C | Sensitive to aromatic compounds, ammonia |
S4 | W6S | Sensitive to hydrogen |
S5 | W5C | Sensitive to olefin, short-chain aromatic compounds |
S6 | W1S | Sensitive to methyl |
S7 | W1W | Sensitive to sulfur compounds |
S8 | W2S | Sensitive to alcohols, aldehydes, and ketones |
S9 | W2W | Sensitive to aromatic components, organic sulfides |
S10 | W3S | Sensitive to long-chain alkanes |
Appendix B
Name of Detecting Electrodes | Characteristics |
---|---|
CT0 | Saltiness |
CA0 | Sourness |
C00 | Bitterness, Aftertaste-B |
GL1 | Sweetness |
AE1 | Astringency, Aftertaste-A |
AAE | Umami, Richness |
Appendix C
Appendix D
Count | Compounds | Metabolite Chromatographic Area | |||||
---|---|---|---|---|---|---|---|
0 min | 4 min | 8 min | 12 min | 16 min | 20 min | ||
Aldehydes | |||||||
1 | 3-Methylbutyraldehyde | 11,792,185 ± 2,854,916 f | 66,958,060 ± 1,402,188 a | 25,558,481 ± 578,827 c | 43,755,395 ± 1,209,962 b | 17,151,676 ± 1,641,040 eb | 20,085,417 ± 1,074,126 d |
2 | Valeraldehyde | 12,328,728 ± 1,193,172 c | 13,254,495 ± 3,471,841 a | 6,853,643 ± 620,083 f | 11,555,485 ± 276,391 d | 13,002,353 ± 1,723,130 b | 9,116,002 ± 989,242 e |
3 | Hexanal | 79,779,242 ± 3,549,264 f | 25,318,392 ± 1,436,250 a | 13,975,975 ± 430,712 d | 22,879,858 ± 990,146 b | 12,519,861 ± 1,362,172 e | 14,225,145 ± 499,887 c |
4 | 2-Methyl-2-butenal | - | - | - | - | 10,949,054 ± 2,022,243 a | - |
5 | Octanal | - | - | 4,681,098 ± 252,133 b | 5,318,865 ± 175,476 a | - | - |
6 | 1--Nonanal | 7,715,864 ± 839,617 a | - | 3,629,976 ± 271,877 c | 3,727,471 ± 222,927 b | - | - |
7 | Dodecyl aldehyde | 2,996,359 ± 566,034 a | - | - | - | - | - |
Alcohols | |||||||
8 | 1,2-Cyclopentanediol,(1R,2R)-rel- | 10,273,253 ± 1,925,406 a | - | - | - | - | - |
9 | 1,3-Cyclopentanediol, trans | - | 6,418,041 ± 833,209 a | - | - | - | - |
10 | 1-Pentanol | - | 28,087,409 ± 396,453 a | - | - | - | 15,065,364 ± 339,365 b |
11 | 1-Hexanol | 14,580,062 ± 1,367,430 a | 8,659,778 ± 1,588,293 b | - | - | - | - |
12 | 1-Heptanol | 4,663,295 ± 713,776 a | - | - | - | - | - |
13 | 6-Methyl-5-hepten-2-ol | - | - | 3,058,765 ± 540,925 b | - | - | 3,677,949 ± 273,484 a |
14 | 2,3-Butanediol | - | 6,693,563 ± 609,567 a | - | - | - | - |
15 | 1,2,3-Butanetriol | 7,340,648 ± 1,314,908 b | 8,897,276 ± 1,408,640 a | - | 2,972,566 ± 531,916 c | - | - |
16 | Furfuryl alcohol | - | - | - | - | - | 1,950,106 ± 152,721 a |
17 | (1α,2β,5α)2-Methyl-5-(1-methylvinyl) cyclohexanol | - | - | - | - | 5,592,789 ± 270,471 a | - |
18 | Alpha,alpha-dimethyl-benzyl alcohol | - | 2,671,747 ± 238,445 b | - | 2,249,955 ± 27,448 c | 5,424,527 ± 164,274 a | 1,560,790 ± 39,400 d |
19 | Butanamide,N-(aminocarbonyl)-2-bromo-2-ethyl- | - | - | - | - | 2,578,017 ± 167,351 a | - |
20 | 2-Hexadecanol | - | - | 3,581,997 ± 749,851 a | - | - | - |
21 | 1-Dodecanol | - | - | 8,599,055 ± 413,554 b | 8,241,799 ± 692,477 c | 10,935,789 ± 277,967 a | 3,595,720 ± 550,123 d |
22 | Bicyclo[3.1.1]hept-3-en-2-ol,4,6,6-trimethyl- | - | - | 3,071,251 ± 437,217 a | - | - | - |
Ketones | |||||||
23 | 2,3-Pentanedione | - | 7,866,256 ± 204,624 a | - | - | - | - |
24 | 2-Heptanone | 7,019,712 ± 2,395,912 e | 16,903,971 ± 3,153,722 a | 9,675,887 ± 755,396 c | 7,603,704 ± 781,266 d | - | 12,132,543 ± 572,100 b |
25 | Heptaldehyde | - | - | - | 2,299,077 ± 209,386 | - | - |
26 | 2-Nonanone | - | 14,118,026 ± 255,105 a | 9,859,106 ± 412,861 c | 10,813,666 ± 79,431 b | - | 8,686,225 ± 356,732 d |
27 | 2-Tridecanone | - | - | - | -- | - | 3,788,860 ± 149,410 a |
28 | 2-Decanone | 5,442,684 ± 153,060 d | 5,330,997 ± 496,588 e | 7,659,657 ± 623,602 b | 19,850,564 ± 3,329,870 a | - | 6,321,176 ± 136,924 c |
Esters | |||||||
29 | Arachic acid benzyl ester | - | - | - | - | - | 10,994,925 ± 1,202,986 a |
30 | Ethyl caproate | 68,912,252 ± 4,890,018 a | 59,082,777 ± 4,334,477 b | 9,580,383 ± 395,585 e | 5,626,718 ± 323,192 f | 15,778,964 ± 1,745,053 d | 37,619,477 ± 847,233 c |
31 | Ethyl heptanoate | 9,559,224 ± 1,021,695 a | - | - | - | - | - |
32 | Ethyl caprylate | 37,292,353 ± 9,104,355 a | 5,415,206 ± 367,312 c | 6,785,121 ± 486,156 b | 2,451,390 ± 130,915 e | - | 3,425,805 ± 333,257 d |
33 | Hexyl formate | - | 4,804,898 ± 456,699 a | - | - | - | - |
34 | Ethyl nonanoate | 28,577,271 ± 2,288,009 a | - | - | - | - | - |
35 | γ-Butyrolactone | - | 7,026,474 ± 230,187 b | 6,776,864 ± 103,466 d | 6,840,893 ± 764,429 c | - | 9,143,145 ± 240,747 a |
36 | Benzyl acetate | - | - | - | - | 5,388,247 ± 228,763 a | - |
37 | Arachic acid benzyl ester | - | - | - | - | 2,473,166 ± 161,706 a | - |
38 | γ-U-ecanolactone | 3,044,967 ± 139,525 b | 2,816,819 ± 771,128 c | 5,172,774 ± 318,146 a | 2,364,849 ± 451,147 d | - | |
39 | Ethyl palmitate | 9,939,285 ± 976,759 b | - | 16,623,361 ± 628,505 a | 7,094,880 ± 304,630 c | - | 1,749,057 ± 149,315 d |
40 | Dimethyl phthalate | 8,036,946 ± 993,794 d | 4,421,546 ± 692,111 e | 30,910,696 ± 550,872 a | 11,128,227 ± 337,048 b | 9,079,978 ± 146,937 c | 4,015,313 ± 217,464 f |
41 | Ethyl oleate | 6,533,353 ± 353,295 c | 2,562,580 ± 170,496 d | 16,803,248 ± 133,139 a | 8,270,314 ± 555,643 b | - | - |
42 | Ethyl linoleate | - | - | 5,342,733 ± 761,636 a | - | - | - |
43 | Diisobutyl phthalate | - | - | 15,985,501 ± 574,543 a | - | - | - |
Acids | |||||||
44 | Malonic acid | 7,257,275 ± 984,808 a | - | - | - | - | - |
45 | 3-Methyl-,3,7-dimethyl-2,6-octadienyl ester,(E)-Butanoic acid | - | - | a5,562,894 ± 567,289 a | - | - | - |
46 | 2-Propylmalonic acid | 6,711,452 ± 1,532,775 a | - | - | - | - | - |
47 | Valeric acid | 10,687,396 ± 1,427,136 a | 3,054,025 ± 495,506 b | - | - | - | - |
48 | Hexanoic acid | - | - | 8,132,140 ± 426,480 a | 3,153,899 ± 424,842 c | - | 7,729,154 ± 226,647 b |
49 | Octanoic acid | 7,099,170 ± 194,137 a | - | 5,565,560 ± 1,435,562 b | - | - | - |
50 | Nonanoic acid | 4,302,954 ± 195,209 a | - | 3,469,377 ± 175,199 b | - | - | - |
Olefins | |||||||
51 | (-)-Limonene | - | - | 4,131,493 ± 932,135 b | 14,250,738 ± 315,018 a | - | - |
52 | Phenylethylene | 37,340,219 ± 2,949,898 a | - | 19,210,526 ± 639,833 b | 13,823,767 ± 700,161 d | 17,590,988 ± 1,109,361 c | - |
Alkanes | |||||||
53 | Decylamine | - | - | - | - | - | 4,346,195 ± 439,297 a |
54 | 1,1-Diethoxy-octane | 2,188,751 ± 368,020 a | - | - | - | - | - |
Pyrazines | |||||||
55 | 2-Methylpyrazine | - | 10,441,853 ± 648,013 b | 4,142,044 ± 278,044 d | 6,436,952 ± 377,356 c | - | 10,748,816 ± 462,731 a |
56 | 2,5-Dimethyl pyrazine | - | 31,783,456 ± 5,448,943 a | 8,468,775 ± 2,207,879 d | 8,811,310 ± 570,516 c | - | 17,449,646 ± 627,200 b |
57 | Pyrazine,2-methyl-3-(2-methylpropyl)- | - | 2,553,673 ± 403,754 b | 2,288,035 ± 171,640 c | - | - | 2,562,403 ± 403,020 a |
58 | 2,3,5-Trimethylpyrazine | - | 2,781,717 ± 348,256 a | - | - | - | 2,105,884 ± 283,159 b |
59 | Pyrazine,2-ethyl-3,5-dimethyl | - | 8,306,729 ± 2,108,82 a | 4,469,916 ± 507,365 d | 3,928,670 ± 492,677 e | 4,614,976 ± 336,516 c | 7,382,020 ± 77,193 b |
Other | |||||||
60 | Toluene | - | - | 13,651,178 ± 700,810 b | 11,227,668 ± 615,214 c | 21,142,789 ± 2,075,904 a | - |
61 | 1,2-Xylene | - | - | - | - | 35,065,628 ± 13,206,967 a | - |
62 | (+)-Phenaminum | - | - | - | - | - | 3,101,526 ± 253,943 a |
63 | 1,4-Xylene | 23,391,467 ± 1,275,672 a | - | - | 3,251,724 ± 259,873 b | - | - |
64 | 2-Pentylfuran | 2,736,420 ± 158,086 c | - | 3,780,418 ± 39,076 b | 4,192,335 ± 466,282 a | - | - |
65 | Butyldiglycol | - | 6,400,411 ± 518,291 b | 3,598,558 ± 445,427 d | 5,714,445 ± 302,624 c | 13,857,534 ± 761,673 a | 3,444,407 ± 206,099 e |
66 | 2-Acetyl pyrrole | - | - | - | 1,234,838 ± 37,017 a | - | 3,595,720 ± 550,123 b |
67 | 2H-Pyran,tetrahydro -2-(2-propyn-1-yloxy)- | - | - | 9,303,984 ± 499,986 a | - | - | - |
68 | 4-Hydroxy-3-methoxystyrene | - | - | 11,222,926 ± 636,901 a | - | - | 3,651,377 ± 354,222 b |
References
- Yeboah, S.O.; Mitei, Y.C.; Ngila, J.C.; Wessjohann, L.; Schmidt, J. Compositional and Structural Studies of the Oils from Two Edible Seeds: Tiger Nut, Cyperus Esculentum, and Asiato, Pachira Insignis, from Ghana. Food Res. Int. 2012, 47, 259–266. [Google Scholar] [CrossRef]
- Codina-Torrella, I.; Guamis, B.; Trujillo, A.J. Characterization and Comparison of Tiger Nuts (Cyperus esculentus L.) from Different Geographical Origin. Ind. Crops Prod. 2015, 65, 406–411. [Google Scholar] [CrossRef]
- Lasekan, O.; Abdulkarim, S.M. Extraction of Oil from Tiger Nut (Cyperus esculentus L.) with Supercritical Carbon Dioxide (Sc-CO2). LWT Food Sci. Technol. 2012, 47, 287–292. [Google Scholar] [CrossRef]
- Guo, T.; Wan, C.; Huang, F.; Wei, C. Evaluation of Quality Properties and Antioxidant Activities of Tiger Nut (Cyperus esculentus L.) Oil Produced by Mechanical Expression or/with Critical Fluid Extraction. LWT 2021, 141, 110915. [Google Scholar] [CrossRef]
- Vega-Morales, T.; Mateos-Diaz, C.; Perez-Machin, R.; Wiebe, J.; Gericke, N.P.; Alarcon, C.; Lopez-Romero, J.M. Chemical Composition of Industrially and Laboratory Processed Cyperus Esculentus Rhizomes. Food Chem. 2019, 297, 170. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, L.; Wang, G.; Zhang, A.; Wang, X.; Jiang, L. Ultrasonication Effects on Physicochemical and Emulsifying Properties of Cyperus Esculentus Seed (Tiger Nut) Proteins. LWT 2021, 142, 110979. [Google Scholar] [CrossRef]
- Dun, Q.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of Hot and Cold-Pressed Processes on Volatile Compounds of Peanut Oil and Corresponding Analysis of Characteristic Flavor Components. LWT 2019, 112, 107648. [Google Scholar] [CrossRef]
- Paravisini, L.; Prot, A.; Gouttefangeas, C.; Moretton, C.; Nigay, H.; Dacremont, C.; Guichard, E. Characterisation of the Volatile Fraction of Aromatic Caramel Using Heart-Cutting Multidimensional Gas Chromatography. Food Chem. 2015, 167, 281–289. [Google Scholar] [CrossRef]
- Panagiota, Z.; Fotini, P.; Anthia, M.; Evdoxiamaria, V.; Georgios, B.; Adamantini, P. Single Origin Coffee Aroma: From Optimized Flavor Protocols and Coffee Customization to Instrumental Volatile Characterization and Chemometrics. Molecules 2021, 26, 4609. [Google Scholar]
- Valdés García, A.; Sánchez Romero, R.; Juan Polo, A.; Prats Moya, S.; Maestre Pérez, S.E.; Beltrán Sanahuja, A. Volatile Profile of Nuts, Key Odorants and Analytical Methods for Quantification. Foods 2021, 10, 1611. [Google Scholar] [CrossRef]
- Yahya, H.; Linforth, R.S.T.; Cook, D.J. Flavour Generation during Commercial Barley and Malt Roasting Operations: A Time Course Study. Food Chem. 2014, 145, 378–387. [Google Scholar] [CrossRef]
- Zołnierczyk, A.K.; Szumny, A.A. Sensory and Chemical Characteristic of Two Insect Species: Tenebrio Molitor and Zophobas Morio Larvae Affected by Roasting Processes. Molecules 2021, 26, 2697. [Google Scholar] [CrossRef]
- Aboud, S.A.; Altemimi, A.B.; Al-Hiiphy, A.R.S.; Yi-Chen, L.; Cacciola, F.A. Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules 2019, 24, 4125. [Google Scholar] [CrossRef] [Green Version]
- Laureati, M.; Buratti, S.; Bassoli, A.; Borgonovo, G.; Pagliarini, E. Discrimination and Characterisation of Three Cultivars of Perilla Frutescens by Means of Sensory Descriptors and Electronic Nose and Tongue Analysis. Food Res. Int. 2010, 43, 959–964. [Google Scholar] [CrossRef]
- Claudia, G.V.; Eden, T.; Sigfredo, F. Integrating A Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity. Sensors 2021, 21, 2016. [Google Scholar]
- Chen, J.; Tao, L.; Zhang, T.; Zhang, J.; Wu, T.; Luan, D.; Ni, L.; Wang, X.; Zhong, J. Effect of Four Types of Thermal Processing Methods on the Aroma Profiles of Acidity Regulator-Treated Tilapia Muscles Using E-Nose, Hs-Spme-Gc-Ms, and Hs-Gc-Ims. LWT 2021, 147, 111585. [Google Scholar] [CrossRef]
- Yi, C.; Li, Y.; Zhu, H.; Liu, Y.; Quan, K. Effect of Lactobacillus Plantarum Fermentation on the Volatile Flavors of Mung Beans. LWT 2021, 146, 111434. [Google Scholar] [CrossRef]
- Cai, W.C.; Tang, F.X.; Guo, Z. Effects of Pretreatment Methods and Leaching Methods on Jujube Wine Quality Detected by Electronic Senses and Hs-Spme–Gc–Ms. Food Chem. 2020, 330, 127330. [Google Scholar] [CrossRef]
- Ye, T.T.; Liu, J.; Wan, P.; Liu, S.Y.; Wang, Q.Z.; Chen, D.W. Investigation of The Effect of Polar Components in Cream on the Flavor of Heated Cream Based on Nmr and Gc-Ms Methods. LWT 2022, 155, 112940. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Lu, X.; Sun, H.; Wang, F. Effect of Oilseed Roasting on the Quality, Flavor and Safety of Oil: A Comprehensive Review. Food Res. Int. 2021, 150, 110791. [Google Scholar] [CrossRef]
- Li, X.Z.; Liu, S.Q. Effect of Ph, Xylose Content and Heating Temperature on Colour and Flavour Compound Formation of Enzymatically Hydrolysed Pork Trimmings. LWT 2021, 150, 112017. [Google Scholar] [CrossRef]
- Kasote, D.; Singh, V.K.; Bollinedi, H.; Singh, A.K.; Sreenivasulu, N.; Regina, A. Profiling of 2-Acetyl-1-Pyrroline and Other Volatile Compounds in Raw and Cooked Rice of Traditional and Improved Varieties of India. Foods 2021, 10, 1917. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, B.; Xu, Y.; Yao, Z.; Zhu, B.; Li, X.; Sun, Y. Effects of Different Thermal Treatment Temperatures on Volatile Flavour Compounds of Water-Boiled Salted Duck after Packaging. LWT 2022, 154, 112625. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, C.C.; Jiang, B.Z.; Mo, X.Y.; Wang, Z.Y. Optimization of Hs-Spme for Gc-Ms Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Molecules 2021, 26, 5808. [Google Scholar] [CrossRef]
- Cai, J.S.; Zhu, Y.Y.; Ma, R.H.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Effects of Roasting Level on Physicochemical, Sensory, and Volatile Profiles of Soybeans Using Electronic Nose and Hs-Spme-Gc-Ms. Food Chem. 2021, 340, 127880. [Google Scholar] [CrossRef]
- Yin, X.Y.; Lv, Y.C.; Wen, R.X.; Wang, Y.; Chen, Q.; Kong, B.H. Characterization of Selected Harbin Red Sausages on the Basis of Their Flavour Profiles Using Hs-Spme-Gc/Ms Combined with Electronic Nose and Electronic Tongue. Meat Sci. 2021, 172, 108345. [Google Scholar] [CrossRef]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile Compounds, Affecting Factors and Evaluation Methods For Rice Aroma: A Review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Adelina, N.M.; Wang, H.; Zhang, L.; Zhao, Y. Comparative Analysis of Volatile Profiles in Two Grafted Pine Nuts By Headspace-Spme/Gc-Ms and Electronic Nose As Responses To Different Roasting Conditions. Food Res. Int. 2021, 140, 110026. [Google Scholar] [CrossRef]
- Du, H.Z.; Chen, Q.; Liu, Q.; Wang, W.; Kong, B.H. Evaluation of Flavor Characteristics of Bacon Smoked with Different Woodchips By Hs-Spme-Gc-Ms Combined with an Electronic Tongue and Electronic Nose. Meat Sci. 2021, 182, 108626. [Google Scholar] [CrossRef]
- Bi, S.; Wang, A.; Wang, Y.; Xu, X.; Luo, D.; Shen, Q.; Wu, J. Effect of Cooking on Aroma Profiles of Chinese Foxtail Millet (Setaria italica) and Correlation with Sensory Quality. Food Chem. 2019, 289, 692–698. [Google Scholar] [CrossRef]
- Cao, Z.F.; Liu, Y.; Zhu, H.; Li, Y.S.; Xiao, Q.; Yi, C.P. Effect of Soy Protein Isolate on Textural Properties, Cooking Properties and Flavor of Whole-Grain Flat Rice Noodles. Foods 2021, 10, 1085. [Google Scholar] [CrossRef]
- Yang, S.; Hao, N.; Meng, Z.; Li, Y.; Zhao, Z. Identification, Comparison and Classification of Volatile Compounds in Peels of 40 Apple Cultivars by Hs-Spme with Gc-Ms. Foods 2021, 10, 1051. [Google Scholar] [CrossRef]
- Mohammed, J.; Belisle, C.E.; Wang, S.; Itle, R.A.; Adhikari, K.; Chavez, D.J. Volatile Profile Characterization of Commercial Peach (Prunus persica) Cultivars Grown in Georgia, Usa. Horticulturae 2021, 7, 516. [Google Scholar] [CrossRef]
- Spada, F.P.; Balagiannis, D.P.; Purgatto, E.; Alencar, S.M.; Canniatt-Brazaca, S.G.; Parker, J.K. Characterisation of the Chocolate Aroma in Roast Jackfruit Seeds. Food Chem. 2021, 354, 129537. [Google Scholar] [CrossRef]
- Parr, H.; Bolat, I.; Cook, D. Modelling Flavour Formation in Roasted Malt Substrates under Controlled Conditions of Time and Temperature. Food Chem. 2021, 337, 121641. [Google Scholar] [CrossRef]
- Erten, E.S.; Cadwallader, K.R. Identification of Predominant Aroma Components of Raw, Dry Roasted and Oil Roasted Almonds. Food Chem. 2017, 217, 244–253. [Google Scholar] [CrossRef]
- Tian, P.; Zhan, P.; Tian, H.; Wang, P.; Lu, C.; Zhao, Y.; Ni, R.; Zhang, Y. Analysis of Volatile Compound Changes in Fried Shallot (Allium Cepa L. Var. Aggregatum) Oil at Different Frying Temperatures By Gc-Ms, Oav, and Multivariate Analysis. Food Chem. 2021, 345, 128748. [Google Scholar] [CrossRef]
- Ge, Y.; Li, K.; Xie, C.; Xu, Y.; Shi, C.; Hang, F.; Doherty, W.O.S. Formation of Volatile and Aroma Compounds during the Dehydration of Membrane-Clarified Sugarcane Juice to Non-Centrifugal Sugar. Foods 2021, 10, 1561. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, Y.; Wang, Y.; Li, L.; Li, C.; Zhao, Y.; Yang, S. Contribution of Autochthonous Microbiota Succession to Flavor Formation During Chinese Fermented Mandarin Fish (Siniperca chuatsi). Food Chem. 2021, 348, 129107. [Google Scholar] [CrossRef]
- Gao, C.; Li, Y.; Pan, Q.; Fan, M.; Wang, L.; Qian, H. Analysis of the Key Aroma Volatile Compounds in Rice Bran During Storage and Processing via Hs-Spme Gc/Ms. J. Cereal Sci. 2021, 99, 103178. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, J.; Shi, X.; Wang, B.; Zheng, X.; Zheng, X. Characteristic Physicochemical Indexes and Flavor Compounds in Xinjiang Kazak Cheese During Ripening. Food Biosci. 2020, 35, 100586. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, D.; Chen, R.; Yang, X.; Liu, H.; Wang, Z.; Hui, T. Comprehensive Evaluation of Flavor in Charcoal and Electric-Roasted Tamarix Lamb by Hs-Spme/Gc-Ms Combined with Electronic Tongue and Electronic Nose. Foods 2021, 10, 2676. [Google Scholar] [CrossRef]
- Feng, X.; Wang, H.; Wang, Z.; Huang, P.; Kan, J. Discrimination and Characterization of The Volatile Organic Compounds In Eight Kinds of Huajiao with Geographical Indication of China Using Electronic Nose, Hs-Gc-Ims and Hs-Spme-Gc-Ms. Food Chem. 2021, 375, 131671. [Google Scholar] [CrossRef]
- Su, D.; He, J.-J.; Zhou, Y.-Z.; Li, Y.-L.; Zhou, H.-J. Aroma Effects of Key Volatile Compounds In Keemun Black Tea at Different Grades: Hs-Spme-Gc-Ms, Sensory Evaluation, and Chemometrics. Food Chem. 2021, 373, 131587. [Google Scholar] [CrossRef]
- Yao, W.; Cai, Y.; Liu, D.; Chen, Y.; Li, J.; Zhang, M.; Chen, N.; Zhang, H. Analysis of Flavor Formation During Production of Dezhou Braised Chicken Using Headspace-Gas Chromatography-Ion Mobility Spec-Trometry (Hs-Gc-Ims). Food Chem. 2022, 370, 130989. [Google Scholar] [CrossRef]
- Akkad, R.; Buchko, A.; Johnston, S.P.; Han, J.; House, J.D.; Curtis, J.M. Sprouting Improves The Flavour Quality of Faba Bean Flours. Food Chem. 2021, 364, 130355. [Google Scholar] [CrossRef]
- Sanchez-Zapata, E.; Fernandez-López, J.; Perez-Alvarez, J.A.; Soares, J.; Sousa, S.; Gomes, A.M.P.; Pintado, M.M.E. In Vitro Evaluation of “Horchata” Co-Products as Carbon Source for Probiotic Bacteria Growth. Food Bioprod. Process. 2013, 91, 279–286. [Google Scholar] [CrossRef]
Count | RT | Compounds | RI | Formula | Molecular Ion Mass (M+) | CAS# | Relative Content/(%) | Qualitative Method | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 min | 4 min | 8 min | 12 min | 16 min | 20 min | ||||||||
Aldehydes | |||||||||||||
1 | 3.14 | 3-Methylbutyraldehyde | 652 | C5H10O | 86.07 | 590-86-3 | 0.80 c | 1.73 a | 0.25 b | 0.25 a | 0.77 b | 0.77 b | MS, RI |
2 | 4.21 | Valeraldehyde | 699 | C5H10O | 86.07 | 110-62-3 | 0.40 cd | 0.28 c | 0.17 d | 0.65 a | 1.31 ab | 0.29 bc | MS, RI |
3 | 6.88 | Hexanal | 800 | C6H12O | 100.09 | 66-25-1 | 0.79 a | 1.87 cd | 0.03 e | 0.74 b | 0.83 bc | 0.24 de | MS, RI |
4 | 7.23 | 2-Methyl-2-butenal | 745 | C5H8O | 84.06 | 497-03-0 | ND | ND | ND | ND | 0.18 a | ND | MS, RI |
5 | 14.91 | Octanal | 1003 | C8H16O | 128.12 | 124-13-0 | 0.16 a | ND | 0.09 b | a | ND | ND | MS, RI |
6 | 19.37 | 1--Nonanal | 1104 | C9H18O | 142.13 | 124-19-6 | 0.12 a | ND | 0.07 c | 0.03 b | ND | ND | MS, RI |
7 | 21.60 | Dodecyl aldehyde | 1409 | C12H24O | 184.18 | 112-54-9 | 0.09 a | ND | ND | ND | ND | ND | RI |
Alcohols | |||||||||||||
8 | 7.21 | 1,2-Cyclopentanediol,(1R,2R)-rel- | - | C5H10O2 | 102.07 | 5057-99-8 | 0.43 a | ND | ND | ND | ND | ND | MS, RI |
9 | 7.25 | 1,3-Cyclopentanediol, trans | - | C5H10O2 | 102.07 | 16326-98-0 | ND | 0.40 a | ND | ND | ND | ND | MS, RI |
10 | 13.41 | 1-Pentanol | 822 | C5H12O | 104.07 | 110-66-7 | ND | 0.58 a | ND | ND | ND | 0.30 b | MS, RI |
11 | 18.08 | 1-Hexanol | 868 | C6H14O | 102.10 | 111-27-3 | 0.46 a | 0.33 b | ND | ND | ND | ND | MS, RI |
12 | 21.71 | 1-Heptanol | 970 | C7H16O | 116.12 | 111-70-6 | 0.10 a | ND | ND | ND | ND | ND | MS, RI |
13 | 23.21 | 6-Methyl-5-hepten-2-ol | 994 | C8H16O | 128.12 | 1569-60-4 | ND | ND | 0.15 b | ND | ND | 0.18 a | MS, RI |
14 | 23.99 | 2,3-Butanediol | - | C4H10O2 | 90.07 | 513-85-9 | ND | 0.09 a | ND | ND | ND | ND | RI |
15 | 25.43 | 1,2,3-Butanetriol | - | C4H10O3 | 106.06 | 4435-50-1 | 0.21 b | 0.25 a | ND | 0.18 b | ND | ND | MS |
16 | 27.60 | Furfuryl alcohol | 859 | C5H6O2 | 98.04 | 98-00-0 | ND | ND | ND | ND | ND | 0.40 a | MS, RI |
17 | 28.10 | (1α,2β,5α)2-Methyl-5-(1-methylvinyl) cyclohexanol | 1192 | C10H18O | 154.14 | 38049-26-2 | ND | ND | ND | ND | 0.10 a | ND | MS, RI |
18 | 29.84 | Alpha,alpha-dimethyl-benzyl alcohol | 1090 | C9H12O | 136.09 | 617-94-7 | ND | 0.03 b | ND | 0.03 b | 0.18 a | 0.04 b | MS, RI |
19 | 30.11 | Butanamide,N-(aminocarbonyl)-2-bromo-2-ethyl- | 1521 | C7H13BrN2O2 | 236.02 | 77-65-6 | ND | ND | ND | ND | 0.08 a | ND | RI |
20 | 32.19 | 2-Hexadecanol | 1702 | C16H34O | 242.26 | 14852-31-4 | ND | ND | 0.50 a | ND | ND | ND | RI |
21 | 34.19 | 1-Dodecanol | 1473 | C12H26O | 186.20 | 112-53-8 | ND | ND | 0.41 c | 0.21 b | 0.12 a | 0.14 d | |
22 | 34.47 | Bicyclo[3.1.1]hept-3-en-2-ol,4,6,6-trimethyl- | 1140 | C10H16O | 152.12 | 473-67-6 | ND | ND | 0.21 a | ND | ND | ND | RI |
Ketones | |||||||||||||
23 | 6.38 | 2,3-Pentanedione | 698 | C5H8O2 | 100.05 | 600-14-6 | ND | 0.25 a | ND | ND | ND | ND | MS, RI |
24 | 10.40 | 2-Heptanone | 891 | C7H14O | 114.10 | 110-43-0 | 0.62 a | 0.52 a | 0.14 b | 0.41 b | ND | 0.33 a | MS, RI |
25 | 10.54 | Heptaldehyde | 901 | C7H14O | 114.10 | 111-71-7 | ND | ND | ND | 0.14 a | ND | ND | MS, RI |
26 | 19.19 | 2-Nonanone | 1092 | C9H18O | 142.14 | 821-55-6 | ND | 0.22 a | 0.14 b | 0.78 ab | ND | 0.26 ab | MS, RI |
27 | 22.70 | 2-Tridecanone | 1497 | C13H26O | 198.20 | 593-08-8 | ND | ND | ND | 0.11 a | ND | 0.14 b | MS, RI |
28 | 22.82 | 2-Decanone | 1193 | C10H20O | 156.15 | 693-54-9 | 0.21 d | 0.01 d | 0.12 c | a | ND | 0.12 b | MS, RI |
Esters | |||||||||||||
29 | 5.67 | Arachic acid benzyl ester | 3003 | C27H46O2 | 402.35 | 77509-04-7 | ND | ND | ND | ND | ND | 0.16 a | MS |
30 | 12.50 | Ethyl caproate | 1000 | C8H16O2 | 144.12 | 123-66-0 | 0.28 a | 1.77 a | 0.09 c | 0.18 c | 0.96 b | 0.31 a | MS, RI |
31 | 17.06 | Ethyl heptanoate | 1097 | C9H18O2 | 158.14 | 106-30-9 | 0.11 a | ND | ND | ND | ND | ND | MS, RI |
32 | 20.87 | Ethyl caprylate | 1196 | C10H20O2 | 172.14 | 106-32-1 | 1.59 a | 0.07 b | 0.19 b | 0.04 b | ND | 0.21 b | MS, RI |
33 | 21.70 | Hexyl formate | 1039 | C8H16O2 | 144.12 | 112-23-2 | ND | 0.04 a | ND | ND | ND | ND | RI |
34 | 23.99 | Ethyl nonanoate | 1296 | C11H22O2 | 186.16 | 123-29-5 | 0.25 a | ND | ND | ND | ND | ND | MS, RI |
35 | 26.56 | γ-Butyrolactone | 915 | C4H6O2 | 86.04 | 96-48-0 | ND | 0.11 c | 0.43 bc | 0.25 ab | ND | 0.34 a | MS, RI |
36 | 29.04 | Benzyl acetate | 1164 | C9H10O2 | 150.07 | 140-11-4 | ND | ND | ND | ND | 0.10 a | ND | RI |
37 | 29.95 | Arachic acid benzyl ester | 1298 | C12H16O2 | 192.12 | 151-05-3 | ND | ND | ND | ND | 0.24 a | ND | MS, RI |
38 | 35.45 | γ-Undecanolactone | 1576 | C11H20O2 | 184.15 | 104-67-6 | 0.05 b | 0.09 b | 0.09 a | 0.15 b | ND | 0.17 b | MS, RI |
39 | 40.06 | Ethyl palmitate | 1993 | C18H36O2 | 284.27 | 628-97-7 | 0.11 c | ND | 0.18 a | 0.13 b | ND | 0.06 d | MS, RI |
40 | 40.96 | Dimethyl phthalate | 1454 | C10H10O4 | 194.06 | 131-11-3 | 1.56 d | 0.14 f | 0.24 a | 0.62 c | 0.13 b | 0.15 df | MS, RI |
41 | 43.36 | Ethyl oleate | 2173 | C20H38O2 | 310.29 | 111-62-6 | 0.0 c | 0.19 d | 0.10 a | 0.62 b | ND | ND | MS, RI |
42 | 43.96 | Ethyl linoleate | 2162 | C20H36O2 | 308.27 | 544-35-4 | ND | ND | 0.19 a | ND | ND | ND | MS |
43 | 44.22 | Diisobutyl phthalate | 2317 | C16H22O4 | 334.21 | 84-69-5 | ND | ND | 0.28 a | ND | ND | ND | MS, RI |
Acids | |||||||||||||
44 | 22.09 | Malonic acid | - | C3H4O4 | 104.01 | 141-82-2 | 0.12 b | ND | ND | ND | 0.83 a | ND | RI |
45 | 25.65 | 3-Methyl-,3,7-dimethyl-2,6-octadienyl ester,(E)-Butanoic acid | 1606 | C15H26O2 | 238.19 | 109-20-6 | ND | ND | 0.22 a | ND | ND | RI | |
46 | 27.94 | 2-Propylmalonic acid | - | C6H10O4 | 146.06 | 616-62-6 | 0.28 a | ND | ND | ND | ND | ND | MS |
47 | 29.54 | Valeric acid | 904 | C5H10O2 | 102.07 | 109-52-4 | 0.25 a | 0.13 b | ND | ND | ND | ND | MS, RI |
48 | 31.92 | Hexanoic acid | 990 | C6H12O2 | 116.08 | 142-62-1 | ND | ND | 0.65 b | 0.18 b | ND | 0.27 a | MS, RI |
49 | 36.37 | Octanoic acid | 1180 | C8H16O2 | 144.12 | 124-07-2 | 0.05 a | ND | 0.03 b | ND | ND | ND | MS, RI |
50 | 38.75 | Nonanoic acid | 1273 | C9H18O2 | 158.13 | 112-05-0 | 0.23 a | ND | 0.05 a | ND | ND | ND | MS, RI |
Olefins | |||||||||||||
51 | 10.77 | (-)-Limonene | 1031 | C10H16 | 136.13 | 5989-54-8 | ND | ND | 0.24 b | 0.74 a | ND | ND | MS, RI |
52 | 13.38 | Phenylethylene | 893 | C8H8 | 104.06 | 100-42-5 | 0.77 a | ND | 0.10 b | 0.25 b | 0.93 a | ND | MS, RI |
Alkanes | |||||||||||||
53 | 18.10 | Decylamine | 1255 | C10H23N | 157.18 | 2016-57-1 | ND | ND | ND | ND | ND | 0.18 a | RI |
54 | 20.68 | 1,1-Diethoxy-octane | 1270 | C12H26O2 | 202.19 | 54889-48-4 | 0.51 a | ND | ND | ND | ND | ND | MS, RI |
Pyrazines | |||||||||||||
55 | 13.73 | 2-Methylpyrazine | 831 | C5H6N2 | 94.05 | 109-08-0 | ND | 0.33 b | 0.05 c | 0.12 b | ND | 0.39 a | MS, RI |
56 | 16.29 | 2,5-Dimethyl pyrazine | 917 | C6H8N2 | 108.07 | 123-32-0 | ND | 0.90 a | 0.54 b | 0.09 b | ND | 0.54 a | MS, RI |
57 | 16.92 | Pyrazine,2-methyl-3-(2-methylpropyl)- | 1134 | C9H14N2 | 150.12 | 13925-06-9 | ND | 0.09 b | 0.04 b | ND | ND | 0.21 a | MS, RI |
58 | 19.56 | 2,3,5-Trimethylpyrazine | 1004 | C7H10N2 | 122.08 | 14667-55-1 | ND | 0.07 b | ND | ND | ND | 0.07 a | MS, RI |
59 | 21.02 | Pyrazine,2-ethyl-3,5-dimethyl | 1084 | C8H12N2 | 136.10 | 13925-07-0 | ND | 0.14 b | 0.12 c | 0.07 c | 0.52 a | 0.20 a | MS, RI |
Other | |||||||||||||
60 | 5.63 | Toluene | 763 | C7H8 | 92.06 | 108-88-3 | ND | ND | 1.22 b | 0.36 a | 1.58 b | ND | RI |
61 | 8.28 | 1,2-Xylene | 887 | C8H10 | 106.08 | 95-47-6 | ND | ND | ND | ND | 9.21 ± 0.55 a | ND | MS |
62 | 8.34 | ( + )-Phenaminum | 1141 | C9H13N | 135.10 | 51-64-9 | ND | ND | ND | ND | ND | 0.16 a | MS |
63 | 8.74 | 1,4-Xylene | 865 | C8H10 | 106.08 | 106-42-3 | 0.49 b | ND | ND | 0.08 c | ND | ND | MS, RI |
64 | 12.40 | 2-Pentylfuran | 993 | C9H14O | 138.10 | 3777-69-3 | 0.08 c | ND | 0.04 b | 0.06 a | ND | ND | MS, RI |
65 | 30.52 | Butyldiglycol | 1192 | C8H18O3 | 162.13 | 112-34-5 | ND | 0.04 b | 0.81 b | 0.16 b | 0.32 a | 0.14 b | MS, RI |
66 | 35.27 | 2-Acetyl pyrrole | 1064 | C6H7NO | 109.05 | 1072-83-9 | ND | ND | ND | 0.02 a | ND | 0.23 a | RI |
67 | 35.73 | 2H-Pyran,tetrahydro -2-(2-propyn-1-yloxy)- | 976 | C8H12O2 | 140.08 | 6089-04-9 | ND | ND | 0.15 a | ND | ND | ND | MS, RI |
68 | 39.27 | 4-Hydroxy-3-methoxystyrene | 1317 | C9H10O2 | 150.07 | 7786-61-0 | ND | ND | 0.22 a | ND | ND | 0.22 b | MS, RI |
Count | Compounds | Aroma Characteristics | Threshold | ROAV | |||||
---|---|---|---|---|---|---|---|---|---|
0 min | 4 min | 8 min | 12 min | 16 min | 20 min | ||||
1 | 3-Methylbutyraldehyde | Light Fruit, Sweet, Malt | 1.00 | 66.14 | 100 | 100 | 100 | 100 | 100 |
2 | Valeraldehyde | Almond, Grass, Malt, Oil | 12.00 | 5.74 | 1.49 | 2.12 | 2.54 | 5.28 | 3.92 |
3 | Hexanal | Grass, Fat | 4.50 | 100 | 9.41 | 12.15 | 11.77 | 25.19 | 16.82 |
4 | 2-Methyl-2-butenal | 458.90 | - | - | - | - | 0.14 | - | |
5 | Octanal | Fat, Soap | 0.70 | 74.51 | - | 26.22 | 19.63 | - | - |
6 | 1-1-Nonanal | Rose, Citrus, Fat | 1.00 | 42.68 | - | 14.11 | 7.97 | - | - |
7 | 1-Pentanol | 15.00 | - | 2.85 | - | - | - | 5.18 | |
8 | 1-Hexanol | Potato, Grass, Celery | 2.50 | 34.54 | 5.20 | - | - | - | - |
9 | 1-Heptanol | 330.00 | 0.08 | - | - | - | - | - | |
10 | Bicyclo[3.1.1]hept-3-en-2-ol,4,6,6-trimethyl- | Verbena | 4.00 | - | - | 2.67 | - | - | - |
11 | 2-Heptanone | Cheese, Fruit, Grass Meat | 14.00 | 2.82 | 1.81 | 2.69 | 1.20 | - | 4.57 |
12 | 2-Nonanone | Fruity, Soap | 100.00 | - | 0.22 | 0.39 | 0.20 | - | 0.49 |
13 | 2-Decanone | 7.94 | 3.3 | 1.00 | 3.76 | 3.18 | - | 4.49 | |
14 | Ethyl heptanoate | Pineapple | 1.90 | 27.85 | - | - | - | - | - |
15 | Ethyl caprylate | Pear, Flower and Pineapple | 12.87 | 15.96 | 0.64 | 2.06 | 0.44 | - | 1.50 |
16 | Octanoic acid | Cheese, Oil, Sweat | 5.10 | 7.73 | - | 3.57 | - | - | - |
17 | (-)-Limonene | Lemon | 10.00 | - | - | 1.60 | 3.42 | - | - |
18 | 2-Methylpyrazine | Roasted peanut, Nut | 60.00 | - | 0.28 | 0.27 | 0.24 | - | 1.01 |
19 | 2,5-Dimethyl pyrazine | Fried peanut, Chocolate | 1.80 | - | 25.69 | 18.19 | 10.78 | - | 52.33 |
20 | Pyrazine,2-methyl-3-(2-methylpropyl)- | Celery | 35.00 | - | 0.28 | 0.27 | 0.24 | - | 1.01 |
21 | Pyrazine,2-ethyl-3,5-dimethyl- | Fried peanut, Coffee | 1.00 | - | 12.83 | 17.40 | 8.14 | 43.18 | 41.62 |
22 | 2-Pentylfurana | Butter, Flower, Fruit | 6.00 | 2.54 | - | 2.47 | 1.34 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, C.; Liu, T.; Li, Q.; Wang, D.; Zhang, Y. Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS. Foods 2022, 11, 446. https://doi.org/10.3390/foods11030446
Guan C, Liu T, Li Q, Wang D, Zhang Y. Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS. Foods. 2022; 11(3):446. https://doi.org/10.3390/foods11030446
Chicago/Turabian StyleGuan, Chunbo, Tingting Liu, Quanhong Li, Dawei Wang, and Yanrong Zhang. 2022. "Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS" Foods 11, no. 3: 446. https://doi.org/10.3390/foods11030446
APA StyleGuan, C., Liu, T., Li, Q., Wang, D., & Zhang, Y. (2022). Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS. Foods, 11(3), 446. https://doi.org/10.3390/foods11030446