Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection, Preparation and Extraction
2.2. Determination of Phenolics Utilizing Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry
2.2.1. Preparation of the Lineage Beans for Phenolic Analysis
2.2.2. Screening of Phenolics
2.3. Determination of Enzyme Inhibition
2.4. Statistical Analysis
3. Results
3.1. Types and Quantities of Phenolics
3.2. In Vitro Health-Related Activities
3.3. Correlation Analysis by Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Inthachat, W.; Suttisansanee, U.; Kruawan, K.; On-Nom, N.; Chupeerach, C.; Temviriyanukul, P. Evaluation of Mutagenicity and Anti-Mutagenicity of Various Bean Milks Using Drosophila with High Bioactivation. Foods 2022, 11, 3090. [Google Scholar] [CrossRef] [PubMed]
- Bean Consumption Per Capita. Available online: https://www.helgilibrary.com/indicators/bean-consumption-per-capita/ (accessed on 26 November 2022).
- Heer, M.M.; Winham, D.M. Food Behaviors, Health, and Bean Nutrition Awareness among Low-Income Men: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahasakul, Y.; Aursalung, A.; Thangsiri, S.; Wongchang, P.; Sangkasa-Ad, P.; Wongpia, A.; Polpanit, A.; Inthachat, W.; Temviriyanukul, P.; Suttisansanee, U. Nutritional Compositions, Phenolic Contents, and Antioxidant Potentials of Ten Original Lineage Beans in Thailand. Foods 2022, 11, 2062. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Arráez-Román, D.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phytochemical Characterisation of Green Beans (Phaseolus vulgaris L.) by Using High-performance Liquid Chromatography Coupled with Time-of-flight Mass Spectrometry. Phytochem. Anal. 2013, 24, 105–116. [Google Scholar] [CrossRef]
- Wang, F.; Huang, L.; Yuan, X.; Zhang, X.; Guo, L.; Xue, C.; Chen, X. Nutritional, phytochemical and antioxidant properties of 24 mung bean (Vigna radiate L.) genotypes. Food Prod. Process. Nutr. 2021, 3, 28. [Google Scholar] [CrossRef]
- Zaheer, K.; Humayoun Akhtar, M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 1280–1293. [Google Scholar] [CrossRef]
- Miladinović, J.; Đorđević, V.; Balešević-Tubić, S.; Petrović, K.; Ćeran, M.; Cvejić, J.; Bursać, M.; Miladinović, D. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Sci. Rep. 2019, 9, 10341. [Google Scholar] [CrossRef] [Green Version]
- Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 16 September 2022).
- Tormo, M.A.; Gil-Exojo, I.; Romero de Tejada, A.; Campillo, J.E. Hypoglycaemic and anorexigenic activities of an alpha-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats. Br. J. Nutr. 2004, 92, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Wu, G.; Su, X.; Yang, H.; Zhang, J. Antiobesity action of a daidzein derivative on male obese mice induced by a high-fat diet. Nutr. Res. 2009, 29, 656–663. [Google Scholar] [CrossRef] [PubMed]
- ICH-Q2B. Validation of analytical procedures: Methodology. In Proceedings of the International Conference on Harmonization of Technical Requirements for the Registration of Drugs for Human Use, Geneva, Switzerland, 19 May 1997. [Google Scholar]
- Sirichai, P.; Kittibunchakul, S.; Thangsiri, S.; On-Nom, N.; Chupeerach, C.; Temviriyanukul, P.; Inthachat, W.; Nuchuchua, O.; Aursalung, A.; Sahasakul, Y.; et al. Impact of Drying Processes on Phenolics and In Vitro Health-Related Activities of Indigenous Plants in Thailand. Plants 2022, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Pongkunakorn, T.; Watcharachaisoponsiri, T.; Chupeerach, C.; On-nom, N.; Suttisansanee, U. Inhibitions of key enzymes relevant to obesity and diabetes of Thai local mushroom extracts. Curr. Appl. Sci. Technol. 2017, 17, 181–190. [Google Scholar]
- Promyos, N.; Temviriyanukul, P.; Suttisansanee, U. Evaluation of α-glucosidase inhibitory assay using different sub-classes of flavonoids. Curr. Appl. Sci. Technol. 2017, 17, 172–180. [Google Scholar]
- Suttisansanee, U.; Kunkeaw, T.; Thatsanasuwan, N.; Tonglim, J.; Temviriyanukul, P. The Investigation on Cholinesterases and BACE1 Inhibitory Activities in Various Tea Infusions. Walailak J. Sci. Technol. 2019, 16, 165–174. [Google Scholar] [CrossRef]
- Temviriyanukul, P.; Kittibunchakul, S.; Trisonthi, P.; Inthachat, W.; Siriwan, D.; Suttisansanee, U. Analysis of Phytonutrients, Anti-Mutagenic and Chemopreventive Effects of Tropical Fruit Extracts. Foods 2021, 10, 2600. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.T.; Liu, X.T.; Chen, Q.X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Promyos, N.; Temviriyanukul, P.; Suttisansanee, U. Investigation of Anthocyanidins and Anthocyanins for Targeting α-Glucosidase in Diabetes Mellitus. Prev. Nutr. Food Sci. 2020, 25, 263–271. [Google Scholar] [CrossRef]
- Temviriyanukul, P.; Kittibunchakul, S.; Trisonthi, P.; Kunkeaw, T.; Inthachat, W.; Siriwan, D.; Suttisansanee, U. Mangifera indica ‘Namdokmai’ Prevents Neuronal Cells from Amyloid Peptide Toxicity and Inhibits BACE-1 Activities in a Drosophila Model of Alzheimer’s Amyloidosis. Pharmaceuticals 2022, 15, 591. [Google Scholar] [CrossRef]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef] [PubMed]
- Neumiller, J.J.; Wood, L.; Campbell, R.K. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Pharmacotherapy 2010, 30, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef] [Green Version]
- Mancini, F.; De Simone, A.; Andrisano, V. Beta-secretase as a target for Alzheimer’s disease drug discovery: An overview of in vitro methods for characterization of inhibitors. Anal. Bioanal. Chem. 2011, 400, 1979–1996. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ge, Y.; Han, F.; Li, B.; Yan, S.; Sun, J.; Wang, L. Isoflavone Content of Soybean Cultivars from Maturity Group 0 to VI Grown in Northern and Southern China. J. Am. Oil. Chem. Soc. 2014, 91, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- He, F.-J.; Chen, J.-Q. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Hum. Wellnesss 2013, 2, 146–161. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.A.; Song, T.; Buseman, G.; Barua, K.; Beecher, G.R.; Trainer, D.; Holden, J. Isoflavones in retail and institutional soy foods. J. Agric. Food Chem. 1999, 47, 2697–2704. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellnesss 2014, 3, 136–174. [Google Scholar] [CrossRef] [Green Version]
- Park, M.H.; Ju, J.W.; Park, M.J.; Han, J.S. Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 2013, 712, 48–52. [Google Scholar] [CrossRef]
- Ko, K.P.; Kim, C.S.; Ahn, Y.; Park, S.J.; Kim, Y.J.; Park, J.K.; Lim, Y.K.; Yoo, K.Y.; Kim, S.S. Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: Results from the Korean Genome and Epidemiology Study. Diabetologia 2015, 58, 726–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanri, A.; Mizoue, T.; Takahashi, Y.; Kirii, K.; Inoue, M.; Noda, M.; Tsugane, S. Soy product and isoflavone intakes are associated with a lower risk of type 2 diabetes in overweight Japanese women. J. Nutr. 2010, 140, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Pham, N.M.; Do, V.V.; Binns, C.W.; Hoang, V.M.; Dang, D.A.; Lee, A.H. Soyfood and isoflavone intake and risk of type 2 diabetes in Vietnamese adults. Eur. J. Clin. Nutr. 2017, 71, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jung, H.A.; Park, S.J.; Kim, J.M.; Lee, S.; Choi, J.S.; Cheong, J.H.; Ko, K.H.; Ryu, J.H. The effects of daidzin and its aglycon, daidzein, on the scopolamine-induced memory impairment in male mice. Arch. Pharm. Res. 2010, 33, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.H.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. 6,7,4′-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol. 2018, 826, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.B.; Lee, H.J.; Won, M.H.; Hwang, I.K.; Kang, T.C.; Lee, J.Y.; Nam, S.Y.; Kim, K.S.; Kim, E.; Cheon, S.H.; et al. Soy isoflavones improve spatial delayed matching-to-place performance and reduce cholinergic neuron loss in elderly male rats. J. Nutr. 2004, 134, 1827–1831. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Xu, B. Inhibitory Effects of Phenolics and Saponins From Commonly Consumed Food Legumes in China Against Digestive Enzymes Pancreatic Lipase and α-Glycosidase. Int. J. Food Prop. 2015, 18, 2246–2255. [Google Scholar] [CrossRef]
- Ngoh, Y.-Y.; Choi, S.B.; Gan, C.-Y. The potential roles of Pinto bean (Phaseolus vulgaris cv. Pinto) bioactive peptides in regulating physiological functions: Protease activating, lipase inhibiting and bile acid binding activities. J. Funct. Foods 2017, 33, 67–75. [Google Scholar] [CrossRef]
- Frota, K.M.; Mendonça, S.; Saldiva, P.H.; Cruz, R.J.; Arêas, J.A. Cholesterol-lowering properties of whole cowpea seed and its protein isolate in hamsters. J. Food Sci. 2008, 73, H235–H240. [Google Scholar] [CrossRef] [Green Version]
- Hamada, Y.; Ishiura, S.; Kiso, Y. BACE1 Inhibitor Peptides: Can an Infinitely Small k cat Value Turn the Substrate of an Enzyme into Its Inhibitor? ACS Med. Chem. Lett. 2012, 3, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.H.; Sheng, R.; Hu, Y.Z. Progress in the development of nonpeptidomimetic BACE 1 inhibitors for Alzheimer’s disease. Curr. Med. Chem. 2009, 16, 1806–1820. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Lee, D.-H.; Lee, J.-S. Characterization of a new antidementia β-secretase inhibitory peptide from Saccharomyces cerevisiae. Enzyme Microb. Technol. 2007, 42, 83–88. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Sun, P.; Fan, Z.; Zhang, W.; Feng, C. Royal jelly peptides: Potential inhibitors of β-secretase in N2a/APP695swe cells. Sci. Rep. 2019, 9, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Wu, D.; Wang, J.; Li, F.; Lu, L.; Gao, Y.; Zhong, Z. Effects of Panax notoginseng saponin on α, β, and γ secretase involved in Aβ deposition in SAMP8 mice. Neuroreport 2014, 25, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Karpagam, V.; Sathishkumar, N.; Sathiyamoorthy, S.; Rasappan, P.; Shila, S.; Kim, Y.J.; Yang, D.C. Identification of BACE1 inhibitors from Panax ginseng saponins—An Insilco approach. Comput. Biol. Med. 2013, 43, 1037–1044. [Google Scholar] [CrossRef]
Time (min) | %Solvent A | %Solvent B | Flow Rate (mL/min) |
---|---|---|---|
0.0 | 10 | 90 | 0.5 mL/min |
8.0 | 80 | 20 | |
8.1 | 10 | 90 | |
10.0 | 10 | 90 |
Time (min) | %Solvent A | %Solvent B | Flow Rate (mL/min) |
---|---|---|---|
0.0 | 5 | 95 | 0.5 mL/min |
2.0 | 5 | 95 | |
5.0 | 50 | 50 | |
7.0 | 50 | 50 | |
10.0 | 90 | 10 | |
13.0 | 90 | 10 | |
15.0 | 5 | 95 | |
20.0 | 5 | 95 |
Assay | Assay Components | ||||
---|---|---|---|---|---|
Enzyme | Substrate | Indicator | Extract | Detection Wavelength | |
Lipase | 100 µL of 20 µg/mL lipase 1 | 50 μL of 0.2 mM DNPDB | 10 µL of 16 mM DTNB | 40 µL | 412 nm |
AChE | 100 μL of 0.25 µg/mL AChE 2 | 50 μL of 0.32 mM ACh | |||
BChE | 100 μL of 1.5 µg/mL BChE 3 | 50 μL of 0.4 mM BCh | |||
α-Amylase | 100 µL of 50 mg/mL α-amylase 4 | 50 µL of 30 mM pNPM | 50 µL | 405 nm | |
α-Glucosidase | 100 µL of 0.1 U/mL α-glucosidase 5 | 50 µL of 2 mM pNPG | 50 µL | ||
DPP-IV | 50 µL of 0.02 U/mL DPP-IV 6 | 50 µL of 12 mM Gly-Pro-pNA + 50 µL 100 mM Tris-HCl (pH 8) | 50 µL | ||
BACE-1 | BACE-1 FRET assay kit (Sigma-Aldrich, St. Louis, MO, USA) following manufacturer’s recommendations | λex = 320 nm λem = 405 nm |
Genera | Cultivars | Isoflavone Profiles (mg/100 g Extract) | |||||
---|---|---|---|---|---|---|---|
Daidzein | Daidzin | Glycitein | Glycitin | Genistein | Genistin | ||
Phaseolus | 38 | <LOD | 0.18 ± 0.01 bC | ND | ND | 0.32 ± 0.01 aCD | ND |
47 | ND | <LOD | ND | ND | ND | ND | |
59 | ND | ND | 4.77 ± 0.34 D | ND | ND | ND | |
112 | <LOD | 0.28 ± 0.03 bC | <LOD | ND | 0.50 ± 0.02 aC | ND | |
Vigna | 107 | 132.39 ± 12.70 aC | 5.25 ± 0.32 bC | ND | 0.58 ± 0.02 bD | 0.35 ± 0.01 bC | 0.77 ± 0.06 bC |
108 | 185.71 ± 4.41 aC | 8.98 ± 0.25 bC | ND | 2.59 ± 0.02 cD | 0.54 ± 0.01 cC | 0.98 ± 0.01 cC | |
CN4 | 12.33 ± 0.65 aC | 0.34 ± 0.03 bC | ND | ND | ND | ND | |
CN84-1 | 141.82 ± 2.44 bC | 5.46 ± 0.25 dC | 208.22 ± 6.87 aC | 16.95 ± 0.99 cC | ND | ND | |
Glycine | SJ5 | 3976.11 ± 244.92 bB | 157.85 ± 8.83 cB | 6292.22 ± 21.15 aA | 411.84 ± 10.21 cA | 2.98 ± 0.13 cB | 29.06 ± 0.35 cB |
CM60 | 11156.09 ± 589.64 aA | 423.76 ± 22.01 cA | 4539.29 ± 310.24 bB | 349.16 ± 6.37 cB | 31.69 ± 0.56 cA | 102.85 ± 6.32 cA |
Genera | Cultivars | Phenolic Profiles (mg/100 g Extract) | |||||
---|---|---|---|---|---|---|---|
Quercetin | Luteolin | Apigenin | Naringenin | Kaempferol | Isorhamnetin | ||
Phaseolus | 38 | <LOD | ND | ND | <LOD | <LOD | 0.52 ± 0.04 d |
47 | ND | ND | ND | ND | ND | 0.92 ± 0.07 b | |
59 | ND | ND | ND | <LOD | <LOD | ND | |
112 | 9.44 ± 0.57 | ND | ND | ND | <LOD | <LOD | |
Vigna | 107 | <LOD | ND | ND | ND | 44.97 ± 0.43 | ND |
108 | ND | ND | ND | ND | <LOD | 0.63 ± 0.04 c | |
CN4 | ND | ND | ND | ND | <LOD | 1.37 ± 0.13 a | |
CN84-1 | ND | 6.22 ± 0.06 | <LOD | <LOD | <LOD | ND | |
Glycine | SJ5 | ND | ND | ND | 0.67 ± 0.06 b | ND | ND |
CM60 | ND | ND | ND | 3.00 ± 0.11 a | <LOD | ND |
Genera | Cultivars | Inhibitory Activities (%Inhibition) | ||||||
---|---|---|---|---|---|---|---|---|
Lipase 1 | α-Amylase 2 | α-Glucosidase 2 | DPP-IV 2 | AChE 1 | BChE 1 | BACE-1 3 | ||
Phaseolus | 38 | 17.09 ± 1.46 b | 31.06 ± 1.24 a | 21.39 ± 1.51 f | 38.32 ± 2.55 d | ND | 14.54 ± 1.37 d | 58.23 ± 2.69 a |
47 | 12.06 ± 1.01 c | 25.79 ± 1.47 b | 12.32 ± 0.83 g | 35.63 ± 3.39 d | ND | 12.00 ± 1.13 ef | 53.15 ± 1.58 bc | |
59 | 15.99 ± 1.45 b | 25.04 ± 1.69 b | 47.08 ± 4.67 c | 47.33 ± 1.61 b | ND | 13.29 ± 1.27 de | 56.17 ± 2.93 ab | |
112 | 20.69 ± 0.91 a | 14.15 ± 0.38 d | 6.43 ± 0.59 h | 13.02 ± 1.11 e | ND | 15.94 ± 1.13 c | 50.42 ± 4.28 c | |
Vigna | 107 | 6.89 ± 0.48 e | 30.08 ± 1.33 a | 51.17 ± 4.96 bc | 37.02 ± 3.37 d | ND | 11.58 ± 0.94 f | 24.04 ± 2.12 e |
108 | 21.91 ± 1.63 a | 12.53 ± 0.80 d | 26.91 ± 2.17 e | 11.95 ± 0.83 e | ND | 10.69 ± 0.92 fg | 16.38 ± 0.74 f | |
CN4 | ND | 12.91 ± 0.87 d | 49.32 ± 3.18 c | 51.62 ± 3.37 a | ND | 10.64 ± 1.04 gh | 57.55 ± 2.29 a | |
CN84-1 | ND | 17.26 ± 1.32 c | 37.98 ± 3.59 d | 47.97 ± 4.27 b | ND | 8.25 ± 0.68 h | 54.20 ± 0.65 abc | |
Glycine | SJ5 | 9.57 ± 0.57 d | 24.77 ± 2.41 b | 59.83 ± 3.96 a | 42.44 ± 4.12 c | 11.76 ± 1.15 b | 23.12 ± 1.47 a | 29.83 ± 0.57 d |
CM60 | 9.57 ± 0.90 d | 26.33 ± 2.03 b | 54.43 ± 2.32 b | 45.62 ± 2.35 b | 18.76 ± 1.68 a | 19.94 ± 1.93 b | 22.95 ± 1.04 e | |
Orlistat | 7.94 µM | NA | NA | NA | NA | NA | NA | |
Acarbose | NA | 14.58 µM | 0.53 µM [21] | NA | NA | NA | NA | |
Saxagliptin | NA | NA | NA | 0.27 µM | NA | NA | NA | |
Donepezil | NA | NA | NA | NA | 3.12 µM [22] | 2.14 µM [22] | 1.31 µM [22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chupeerach, C.; Temviriyanukul, P.; Thangsiri, S.; Inthachat, W.; Sahasakul, Y.; Aursalung, A.; Wongchang, P.; Sangkasa-ad, P.; Wongpia, A.; Polpanit, A.; et al. Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand. Foods 2022, 11, 3905. https://doi.org/10.3390/foods11233905
Chupeerach C, Temviriyanukul P, Thangsiri S, Inthachat W, Sahasakul Y, Aursalung A, Wongchang P, Sangkasa-ad P, Wongpia A, Polpanit A, et al. Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand. Foods. 2022; 11(23):3905. https://doi.org/10.3390/foods11233905
Chicago/Turabian StyleChupeerach, Chaowanee, Piya Temviriyanukul, Sirinapa Thangsiri, Woorawee Inthachat, Yuraporn Sahasakul, Amornrat Aursalung, Pitthaya Wongchang, Parichart Sangkasa-ad, Aphinya Wongpia, Auytin Polpanit, and et al. 2022. "Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand" Foods 11, no. 23: 3905. https://doi.org/10.3390/foods11233905
APA StyleChupeerach, C., Temviriyanukul, P., Thangsiri, S., Inthachat, W., Sahasakul, Y., Aursalung, A., Wongchang, P., Sangkasa-ad, P., Wongpia, A., Polpanit, A., Nuchuchua, O., & Suttisansanee, U. (2022). Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand. Foods, 11(23), 3905. https://doi.org/10.3390/foods11233905