Ion Chromatography–High-Resolution Mass Spectrometry Method for the Determination of Bromide Ions in Cereals and Legumes: New Scenario for Global Food Security
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Sample Extraction
2.4. IC-HRMS Analysis
2.5. Method Validation
2.6. Data Analysis
3. Results and Discussion
3.1. Method Development
3.2. Method Validation
3.3. Sample Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glauben, T.; Svanidze, M.; Götz, L.; Prehn, S.; Jaghdani, T.J.; Đurić, I.; Kuhn, L. The War in Ukraine, Agricultural Trade and Risks to Global Food Security. Intereconomics 2022, 57, 157–163. [Google Scholar] [CrossRef]
- Cereals-Monthly-Trade-Eurostat. Directorate General for Agriculture and Rural Development. Available online: https://data.europa.eu/data/datasets/7da42723-7416-491f-88bb-76442722da6a?locale=en (accessed on 8 July 2022).
- Gitz, V.; Meybeck, A.; Lipper, L.; Young, C.; Braatz, S. Climate Change and Food Security: Risks and Responses; Food and Agriculture Organization of the United Nations (FAO) Report: Quebec, QC, Canada, 2016; ISBN 9789251089989. [Google Scholar]
- Brown, M.E.; Antle, J.M.P.; Backlund, E.R.; Carr, W.E.; Easterling, M.K.; Walsh, C.; Ammann, W.; Attavanich, C.B.; Barrett, M.F.; Bellemare, V.; et al. Climate Change, Global Food Security, and the U.S. Food System. Executive Summary. 2015. Available online: https://www.usda.gov (accessed on 8 July 2022).
- Schmidt, M.; Zannini, E.; Arendt, E.K. Recent Advances in Physical Post-Harvest Treatments for Shelf-Life Extension of Cereal Crops. Foods 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinari, G.P.; Rossini, L. Residues after Fumigation with Methyl Bromide: Bromide Ion and Methyl Bromide in Middlings and Final Cereal Foodstuffs. Food Addit. Contam. 1986, 3, 235–240. [Google Scholar] [CrossRef]
- European Commission Regulation (EC) No 359/2005. Off. J. Eur. Union 2005, L114(14), 14–19. Available online: https://data.europa.eu/eli/reg/2011/559/oj (accessed on 8 August 2022).
- European Commission Regulation (EC) No 273/2010. Off. J. Eur. Union 2010, Decision, 81–88. Available online: https://data.europa.eu/eli/reg/2010/273/oj (accessed on 8 August 2022).
- Ristaino, J.B.; Thomas, W. Agriculture, Methyl Bromide, and the Ozone Hole. Can we Fill the Gaps? Plant Dis. 1997, 81, 965–977. [Google Scholar] [CrossRef] [Green Version]
- Budnik, L.T.; Kloth, S.; Velasco-Garrido, M.; Baur, X. Prostate Cancer and Toxicity from Critical Use Exemptions of Methyl Bromide: Environmental Protection Helps Protect against Human Health Risks. Environ. Health. A Glob. Access Sci. Source 2012, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Honaganahalli, P.S.; Seiber, J.N. Health and Environmental Concerns over the Use of Fumigants in Agriculture: The Case of Methyl Bromide. ACS Symp. Ser. 1997, 652, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.H. A Review of the Properties and Usage of Methyl Bromide as a Fumigant. J. Stored Prod. Res. 1966, 1, 353–376. [Google Scholar] [CrossRef]
- Baso-Cejas, E.; Brito, G.; Dıaz, C.; Peña-Méndez, E.M. Determination of Inorganic Bromide Content in Several Vegetable Foods. Bull. Environ. Contam. Toxicol. 2007, 7, 417–420. [Google Scholar] [CrossRef]
- Dugo, G.; Pellicano, T.M.; La Pera, L.; Lo Turco, V.; Tamborrino, A.; Clodoveo, M.L. Determination of inorganic anions in commercial seed oils and in virgin olive oils produced from de-stoned olives and traditional extraction methods, using suppressed ion exchange chromatography (IEC). Food Chem. 2007, 102, 599–605. [Google Scholar] [CrossRef]
- Buldini, P.L.; Cavalli, S.; Trifirò, A. State-of-the-art ion chromatographic determination of inorganic ions in food. J. Chromatogr. A 1997, 789, 529–548. [Google Scholar] [CrossRef]
- Huang, H.C.; Lai, S.F.; Liu, Y.C.; Chen, H.Y.; Tu, W.C. Determination of Bromide Ion Residues in Broccoli after Fumigation with Methyl Bromide by Nonsuppressed Ion-Chromatography. J. AOAC Int. 2005, 88, 6. [Google Scholar] [CrossRef] [Green Version]
- Di Narda, F.; Toniolo, R.; Bontempelli, G. Improved microwave digestion procedure for inductively coupled plasma mass spectrometric determinations of inorganic bromide residues in foodstuffs fumigated with methyl bromide. Anal. Chim. Acta 2001, 436, 245–252. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Gouda, R.; Ryad, L. Determination and validation of inorganic bromide by gas chromatography in several. J. Plant Prot. Pathol. 2014, 5, 1015–1023. [Google Scholar] [CrossRef]
- Herrera López, S.; Scholten, J.; Kiedrowska, B.; de Kok, A. Method Validation and Application of a Selective Multiresidue Analysis of Highly Polar Pesticides in Food Matrices Using Hydrophilic Interaction Liquid Chromatography and Mass Spectrometry. J. Chromatogr. A 2019, 1594, 93–104. [Google Scholar] [CrossRef]
- European Commission. Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC-or IC-MS/MS Measurement I. Food of Plant Origin (QuPPe-PO-Method) A Method Is Described for the Residue Analysis of Very Polar Pesticides. 2021. Available online: www.eurl-pesticides.eu (accessed on 8 August 2022).
- El Aribi, H.; Le Blanc, Y.J.C.; Antonsen, S.; Sakuma, T. Analysis of Perchlorate in Foods and Beverages by Ion Chromatography Coupled with Tandem Mass Spectrometry (IC-ESI-MS/MS). Anal. Chim. Acta 2006, 567, 39–47. [Google Scholar] [CrossRef]
- Guo, H.; Wang, H.; Zheng, J.; Liu, W.; Zhong, J.; Zhao, Q. Sensitive and Rapid Determination of Glyphosate, Glufosinate, Bialaphos and Metabolites by UPLC–MS/MS Using a Modified Quick Polar Pesticides Extraction Method. Forensic Sci. Int. 2018, 283, 111–117. [Google Scholar] [CrossRef]
- Manzano-Sánchez, L.; Martínez-Martínez, J.A.; Domínguez, I.; Vidal, J.L.M.; Frenich, A.G.; Romero-González, R. Development and Application of a Novel Pluri-Residue Method to Determine Polar Pesticides in Fruits and Vegetables through Liquid Chromatography High Resolution Mass Spectrometry. Foods 2020, 9, 553. [Google Scholar] [CrossRef]
- Domingos Alves, R.; Romero-González, R.; López-Ruiz, R.; Jiménez-Medina, M.L.; Garrido Frenich, A. Fast Determination of Four Polar Contaminants in Soy Nutraceutical Products by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2016, 408, 8089–8098. [Google Scholar] [CrossRef]
- Koskinen, W.C.; Marek, L.J.; Hall, K.E. Analysis of Glyphosate and Aminomethylphosphonic Acid in Water, Plant Materials and Soil. Pest Manag. Sci. 2016, 72, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Vass, A.; Robles-Molina, J.; Pérez-Ortega, P.; Gilbert-López, B.; Dernovics, M.; Molina-Díaz, A.; García-Reyes, J.F. Study of Different HILIC, Mixed-Mode, and Other Aqueous Normal-Phase Approaches for the Liquid Chromatography/Mass Spectrometry-Based Determination of Challenging Polar Pesticides. Anal. Bioanal. Chem. 2016, 408, 4857–4869. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, M.; Ando, T.; Sakai, M.; Matsubara, A.; Uchikata, T.; Fukusaki, E.; Bamba, T. High-Throughput Simultaneous Analysis of Pesticides by Supercritical Fluid Chromatography/Tandem Mass Spectrometry. J. Chromatogr. A 2012, 1266, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Robles-Molina, J.; Gilbert-López, B.; García-Reyes, J.F.; Molina-Díaz, A. Simultaneous Liquid Chromatography/Mass Spectrometry Determination of Both Polar and “Multiresidue” Pesticides in Food Using Parallel Hydrophilic Interaction/Reversed-Phase Liquid Chromatography and a Hybrid Sample Preparation Approach. J. Chromatogr. A 2017, 1517, 108–116. [Google Scholar] [CrossRef]
- Adams, S.; Guest, J.; Dickinson, M.; Fussell, R.J.; Beck, J.; Schoutsen, F. Development and Validation of Ion Chromatography-Tandem Mass Spectrometry-Based Method for the Multiresidue Determination of Polar Ionic Pesticides in Food. J. Agric. Food Chem. 2017, 65, 7294–7304. [Google Scholar] [CrossRef]
- Bauer, A.; Luetjohann, J.; Rohn, S.; Kuballa, J.; Jantzen, E. Ion Chromatography Tandem Mass Spectrometry (IC-MS/MS) Multimethod for the Determination of Highly Polar Pesticides in Plant-Derived Commodities. Food Control 2018, 86, 71–76. [Google Scholar] [CrossRef]
- Boušová, K.; Bruggink, C.; Godula, M. Pesticides in Foods by Suppressed Ion Chromatography and Mass Spectrometry. Braz. J. Anal. Chem. 2017, 4, 66–78. [Google Scholar]
- Van Leeuwen, F.X.R.; Sangster, B.; Hildebrandt, A.G. The Toxicology of Bromide Ion. Crit. Rev. Toxicol. 1987, 18, 189–213. [Google Scholar] [CrossRef]
- Park, M.G.; Choi, J.; Hong, Y.S.; Park, C.G.; Kim, B.G.; Lee, S.Y.; Lim, H.J.; Mo, H.H.; Lim, E.; Cha, W. Negative Effect of Methyl Bromide Fumigation Work on the Central Nervous System. PLoS ONE 2020, 15, e0236694. [Google Scholar] [CrossRef]
- Vobecký, M.; Babický, A.; Lener, J.; Švandová, E. Interaction of Bromine with Iodine in the Rat Thyroid Gland at Enhanced Bromide Intake. Biol. Trace Elem. Res. 1996, 54, 207–212. [Google Scholar] [CrossRef]
- Pavelka, S. Metabolism of Bromide and Its Interference with the Metabolism of Iodine. Physiol. Res. 2004, 53, S81–S90. [Google Scholar] [PubMed]
- European Food Safety Authority. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for methyl bromide according to Article 12 of Regulation (EC) No 396/2005. EFSA J. 2013, 11, 3339.
- Vainikka, P.; Hupa, M. Review on Bromine in Solid Fuels. Part 1: Natural Occurrence. Fuel 2012, 95, 1–14. [Google Scholar] [CrossRef]
- European Commission Regulation (EC) No 396/2005, Maximum Residue Levels of Pesticides in/on Food and Feed of Plant and Animal. Off. J. Eur. Union 2005, L70, 1–16. Available online: http://data.europa.eu/eli/reg/2005/396/oj (accessed on 8 August 2022).
- European Commission. Working Document on Pesticides to be Considered for Inclusion in the National Control Programmes to Ensure Compliance with Maximum Residue Levels of Pesticides Residues in and on Food of Plant and Animal Origin. Available online: https://food.ec.europa.eu/system/files/2021-12/pesticides_mrl_guidelines_wrkdoc_12745.pdf (accessed on 8 August 2022).
- European Comission Commission Regulation (EC) No 601/2021 of 13 April 2021. Off. J. Eur. Union 2008, L127, 29–41. Available online: http://data.europa.eu/eli/reg_impl/2021/601/oj (accessed on 8 August 2022).
- Makarov, A.; Scigelova, M. Coupling Liquid Chromatography to Orbitrap Mass Spectrometry. J. Chromatogr. A 2010, 1217, 3938–3945. [Google Scholar] [CrossRef] [Green Version]
- Pihlström, T.; Fernández-Alba, A.R.; Ferrer Amate, C.; Erecius Poulsen, M.; Lippold, R.; Carrasco Cabrera, L.; Pelosi, P.; Valverde, A.; Mol, H.; Jezussek, M.; et al. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. SANTE 2021, 11813, 1–52. [Google Scholar]
- Eichhron, E.; Benkenstein, A.; Wildgrube, C.; Karst, A.; Kolberg, D.; Scherbaum, E.; Anastassiades, M. Selective Analysis of Bromide via LC-MS/MS and Comparison with a Traditional GC-Based Method. 11th European Pesticide Residue Workshop, Limassol, Cyprus, 24–27 May 2016; Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EPRW2016_Eichhorn_O_027.pdf (accessed on 8 August 2022).
- European Comission Commission Regulation (EC) No 839/2008. Off. J. Eur. Union 2008, L234, 1–216. Available online: https://data.europa.eu/eli/reg/2008/839/oj (accessed on 8 August 2022).
Matrix | Production | Bromide Ion (mg kg−1) | |
---|---|---|---|
LEGUMES | Beans_A | EU | 3.6 |
Beans_B | EU | <0.10 | |
Beans_C | EU | <0.10 | |
Beans_D | EU | <0.10 | |
Beans_Black | EU | 1.4 | |
Chickpeas_A | EU | 20 | |
Chickpeas_B | EU | 2.8 | |
Chickpeas_Flour_a | EU | 5.1 | |
Chickpeas_Flour_b | India | 117 | |
Lentils_A | EU | 6.4 | |
Lentils_B | EU | 1.3 | |
Lentils_Red | EU | 13 | |
Lentils_Black | EU | 3.2 | |
CEREALS | Barley pearl | EU | 3.5 |
Corn | EU | 1.1 | |
Oats | EU | 1.8 | |
Quinoa | EU | 2.4 | |
Rice_A | EU | 14 | |
Rice_B | India | 20 | |
Rice_C | India | 1.8 | |
Rice_D | India | 15 | |
Rice_E | EU | <0.10 | |
Rice_F | EU | 13 | |
Rice_G | EU | 14 | |
Rice_Brown | EU | <0.10 | |
Rice_Carnaroli | EU | 0.12 | |
Rice_Vialone Nano | EU | 0.10 | |
Rice_Basmati | EU | 0.41 | |
Rice_Venere | EU | <0.10 | |
Wheat_A | EU | 2.8 | |
Wheat_B | EU | 6.6 | |
Wheat_C | EU | 2.1 | |
Mix of cereals | EU | <0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocchi, R.; Rosato, R.; Bellocci, M.; Migliorati, G.; Scarpone, R. Ion Chromatography–High-Resolution Mass Spectrometry Method for the Determination of Bromide Ions in Cereals and Legumes: New Scenario for Global Food Security. Foods 2022, 11, 2385. https://doi.org/10.3390/foods11162385
Rocchi R, Rosato R, Bellocci M, Migliorati G, Scarpone R. Ion Chromatography–High-Resolution Mass Spectrometry Method for the Determination of Bromide Ions in Cereals and Legumes: New Scenario for Global Food Security. Foods. 2022; 11(16):2385. https://doi.org/10.3390/foods11162385
Chicago/Turabian StyleRocchi, Rachele, Roberta Rosato, Mirella Bellocci, Giacomo Migliorati, and Rossana Scarpone. 2022. "Ion Chromatography–High-Resolution Mass Spectrometry Method for the Determination of Bromide Ions in Cereals and Legumes: New Scenario for Global Food Security" Foods 11, no. 16: 2385. https://doi.org/10.3390/foods11162385
APA StyleRocchi, R., Rosato, R., Bellocci, M., Migliorati, G., & Scarpone, R. (2022). Ion Chromatography–High-Resolution Mass Spectrometry Method for the Determination of Bromide Ions in Cereals and Legumes: New Scenario for Global Food Security. Foods, 11(16), 2385. https://doi.org/10.3390/foods11162385