Longitudinal Trends, Determinants, and Cardiometabolic Impact of Adherence to the Mediterranean Diet among Greek Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Baseline Evaluation
2.2.1. Sociodemographic, Clinical and Biochemical Parameters
2.2.2. Anthropometric Indices and Lifestyle Habits
2.2.3. Depression and Anxiety Symptoms
2.3. Follow-Up Evaluation
2.4. Mediterranean Diet Trajectories
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yngve, A. A Historical Perspective of the Understanding of the Link between Diet and Coronary Heart Disease. Am. J. Lifestyle Med. 2009, 3, 35S–38S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menotti, A.; Puddu, P.E. How the Seven Countries Study contributed to the definition and development of the Mediterranean diet concept: A 50-year journey. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 245–252. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Bach-Faig, A.; Donini, L.M.; Medina, F.X.; Belahsen, R.; et al. Updating the Mediterranean Diet Pyramid towards Sustainability: Focus on Environmental Concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A. Mediterranean diet as intangible heritage of humanity: 10 years on. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.L.; Siani, A.; Fogliano, V.; Geleijnse, J.M.; Giacco, R.; Giampaoli, S.; Iacoviello, L.; Kromhout, D.; Lionetti, L.; Naska, A.; et al. The Mediterranean diet from past to future: Key concepts from the second “Ancel Keys” International Seminar. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [Green Version]
- Ortega, R. Importance of functional foods in the Mediterranean diet. Public Health Nutr. 2006, 9, 1136–1140. [Google Scholar] [CrossRef] [Green Version]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive oil consumption and human health: A narrative review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef]
- Chen, J.; Jayachandran, M.; Bai, W.; Xu, B. A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chem. 2022, 369, 130874. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Choleva, M.; Antonopoulou, S.; Demopoulos, C.A. Wine and its metabolic effects. A comprehensive review of clinical trials. Metab. Clin. Exp. 2018, 83, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Savaiano, D.A.; Hutkins, R.W. Yogurt, cultured fermented milk, and health: A systematic review. Nutr. Rev. 2021, 79, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Vilarnau, C.; Stracker, D.M.; Funtikov, A.; da Silva, R.; Estruch, R.; Bach-Faig, A. Worldwide adherence to Mediterranean Diet between 1960 and 2011. Eur. J. Clin. Nutr. 2019, 72, 83–91. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.; Bach-Faig, A.; Raido Quintana, B.; Buckland, G.; Vaz de Almeida, M.D.; Serra-Majem, L. Worldwide variation of adherence to the Mediterranean diet, in 1961–1965 and 2000–2003. Public Health Nutr. 2009, 12, 1676–1684. [Google Scholar] [CrossRef] [Green Version]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean diet among adults in Mediterranean countries: A systematic literature review. Eur. J. Nutr. 2022, 22, 1–18. [Google Scholar] [CrossRef]
- Popkin, B.M.; Ng, S.W. The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultra-processed foods is not inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Kontogianni, M.D.; Vidra, N.; Farmaki, A.E.; Koinaki, S.; Belogianni, K.; Sofrona, S.; Magkanari, F.; Yannakoulia, M. Adherence rates to the Mediterranean diet are low in a representative sample of Greek children and adolescents. J. Nutr. 2008, 138, 1951–1956. [Google Scholar] [CrossRef] [Green Version]
- Martimianaki, G.; Peppa, E.; Valanou, E.; Papatesta, E.M.; Klinaki, E.; Trichopoulou, A. Today’s Mediterranean Diet in Greece: Findings from the National Health and Nutrition Survey-HYDRIA (2013–2014). Nutrients 2022, 14, 1193. [Google Scholar] [CrossRef]
- Papadimitriou, A.; Foscolou, A.; Itsiopoulos, C.; Thodis, A.; Kouris-Blazos, A.; Brazionis, L.; Sidossis, A.C.; Polychronopoulos, E.; Kokkinos, P.; Panagiotakos, D.; et al. Adherence to the Mediterranean Diet and Successful aging in Greeks living in Greece and abroad: The epidemiological Mediterranean Islands Study (MEDIS). Nutr. Health 2022. [Google Scholar] [CrossRef]
- Varela-Moreiras, G.; Avila, J.M.; Cuadrado, C.; del Pozo, S.; Ruiz, E.; Moreiras, O. Evaluation of food consumption and dietary patterns in Spain by the Food Consumption Survey: Updated information. Eur. J. Clin. Nutr. 2010, 64 (Suppl. 3), S37–S43. [Google Scholar] [CrossRef] [Green Version]
- Bach-Faig, A.; Fuentes-Bol, C.; Ramos, D.; Carrasco, J.L.; Roman, B.; Bertomeu, I.F.; Cristia, E.; Geleva, D.; Serra-Majem, L. The Mediterranean diet in Spain: Adherence trends during the past two decades using the Mediterranean Adequacy Index. Public Health Nutr. 2011, 14, 622–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.A.; Sarria, A.; Popkin, B.M. The nutrition transition in Spain: A European Mediterranean country. Eur. J. Clin. Nutr. 2002, 56, 992–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, S.S.; Caraher, M.; Trichopoulou, A.; de Almeida, M.D. Portuguese households’ diet quality (adherence to Mediterranean food pattern and compliance with WHO population dietary goals): Trends, regional disparities and socioeconomic determinants. Eur. J. Clin. Nutr. 2008, 62, 1263–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira-da-Silva, L.; Pinto, E. Low Adherence to Mediterranean Diet in Portugal: Pregnant Women Nutrition in Portugal and its Repercussions. Acta Med. Port. 2016, 29, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Mendonca, N.; Gregorio, M.J.; Salvador, C.; Henriques, A.R.; Canhao, H.; Rodrigues, A.M. Low Adherence to the Mediterranean Diet Is Associated with Poor Socioeconomic Status and Younger Age: A Cross-Sectional Analysis of the EpiDoC Cohort. Nutrients 2022, 14, 1239. [Google Scholar] [CrossRef]
- Veronese, N.; Notarnicola, M.; Cisternino, A.M.; Inguaggiato, R.; Guerra, V.; Reddavide, R.; Donghia, R.; Rotolo, O.; Zinzi, I.; Leandro, G.; et al. Trends in adherence to the Mediterranean diet in South Italy: A cross sectional study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 410–417. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Giorgianni, G.; Raciti, T.; Galvano, F.; Mistretta, A. Mediterranean diet adherence rates in Sicily, southern Italy. Public Health Nutr. 2014, 17, 2001–2009. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Bonanni, A.; Costanzo, S.; De Lucia, F.; Persichillo, M.; Zito, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Decline of the Mediterranean diet at a time of economic crisis. Results from the Moli-sani study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 853–860. [Google Scholar] [CrossRef]
- Azzam, A. Is the world converging to a ‘Western diet’? Public Health Nutr. 2021, 24, 309–317. [Google Scholar] [CrossRef]
- Naska, A.; Trichopoulou, A. Back to the future: The Mediterranean diet paradigm. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 216–219. [Google Scholar] [CrossRef]
- Elmadfa, I.; Meyer, A.; Nowak, V.; Hasenegger, V.; Putz, P.; Verstraeten, R.; Remaut-DeWinter, A.M.; Kolsteren, P.; Dostalova, J.; Dlouhy, P.; et al. European Nutrition and Health Report 2009. Ann. Nutr. Metab. 2009, 55 (Suppl. S2), 1–40. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2000, 284, 3043–3045. [Google Scholar] [CrossRef]
- Pitsavos, C.; Panagiotakos, D.B.; Chrysohoou, C.; Stefanadis, C. Epidemiology of cardiovascular risk factors in Greece: Aims, design and baseline characteristics of the ATTICA study. BMC Public Health 2003, 3, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastorini, C.M.; Panagiotakos, D.B.; Chrysohoou, C.; Georgousopoulou, E.; Pitaraki, E.; Puddu, P.E.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C.; Group, A.S. Metabolic syndrome, adherence to the Mediterranean diet and 10-year cardiovascular disease incidence: The ATTICA study. Atherosclerosis 2016, 246, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotakos, D.; Pitsavos, C.; Chrysohoou, C.; Palliou, K.; Lentzas, I.; Skoumas, I.; Stefanadis, C. Dietary patterns and 5-year incidence of cardiovascular disease: A multivariate analysis of the ATTICA study. Nutr. Metab. Cardiovasc. Dis. NMCD 2009, 19, 253–263. [Google Scholar] [CrossRef]
- Manios, Y.; Panagiotakos, D.B.; Pitsavos, C.; Polychronopoulos, E.; Stefanadis, C. Implication of socio-economic status on the prevalence of overweight and obesity in Greek adults: The ATTICA study. Health Policy 2005, 74, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association Professional Practice, Committee 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S17–S38. [CrossRef]
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C.; American Heart, A.; National Heart, L.; Blood, I. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Kushner, R.F. Clinical assessment and management of adult obesity. Circulation 2012, 126, 2870–2877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashwell, M.; Gibson, S. A proposal for a primary screening tool: ‘Keep your waist circumference to less than half your height’. BMC Med. 2014, 12, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Katsouyanni, K.; Rimm, E.B.; Gnardellis, C.; Trichopoulos, D.; Polychronopoulos, E.; Trichopoulou, A. Reproducibility and relative validity of an extensive semi-quantitative food frequency questionnaire using dietary records and biochemical markers among Greek schoolteachers. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S118–S127. [Google Scholar] [CrossRef] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Papathanasiou, G.; Georgoudis, G.; Papandreou, M.; Spyropoulos, P.; Georgakopoulos, D.; Kalfakakou, V.; Evangelou, A. Reliability measures of the short International Physical Activity Questionnaire (IPAQ) in Greek young adults. Hell. J. Cardiol. 2009, 50, 283–294. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, K.N.; lacovides, A.; Samolis, S.; Kleanthous, S.; Kaprinis, S.G.; St Kaprinis, G.; Bech, P. Reliability, validity and psychometric properties of the Greek translation of the Zung Depression Rating Scale. BMC Psychiatry 2001, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, K.N.; Papadopoulou, M.; Kleanthous, S.; Papadopoulou, A.; Bizeli, V.; Nimatoudis, I.; Iacovides, A.; Kaprinis, G.S. Reliability and psychometric properties of the Greek translation of the State-Trait Anxiety Inventory form Y: Preliminary data. Ann. Gen. Psychiatry 2006, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M. An overview on the nutrition transition and its health implications: The Bellagio meeting. Public Health Nutr. 2002, 5, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Gordon-Larsen, P. The nutrition transition: Worldwide obesity dynamics and their determinants. Int. J. Obes. Relat. Metab. Disord. 2004, 28 (Suppl. S3), S2–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccio, M.; Bes-Rastrollo, M.; de Gaetano, G.; Iacoviello, L. Challenges to the Mediterranean diet at a time of economic crisis. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1057–1063. [Google Scholar] [CrossRef]
- Tessier, S.; Gerber, M. Factors determining the nutrition transition in two Mediterranean islands: Sardinia and Malta. Public Health Nutr. 2005, 8, 1286–1292. [Google Scholar] [CrossRef] [Green Version]
- Kotsios, P.; Jashari, A. Greek Consumers’ Behaviour Towards Fast-Food Consumption. Int. J. Mark. Stud. 2019, 11, 73. [Google Scholar] [CrossRef]
- Gao, M.; Wang, F.; Shen, Y.; Zhu, X.; Zhang, X.; Sun, X. Trajectories of Mediterranean Diet Adherence and Risk of Hypertension in China: Results from the CHNS Study, 1997–2011. Nutrients 2018, 10, 2014. [Google Scholar] [CrossRef] [Green Version]
- Bonaccio, M.; Costanzo, S.; Castelnuovo, A.F.D.; Gialluisi, A.; Curtis, A.D.; Persichillo, M.; Tabolacci, C.; Facchiano, F.; Cerletti, C.; Donati, M.B.; et al. Abstract 025: Mediterranean Diet Trajectories And Changes In Cardiovascular Risk Factors And Inflammation Markers Over A 12.7 Years Follow-up: Prospective Findings From The Moli-sani Study Cohort. Circulation 2021, 143, A025. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Leppin, A.; Gyrd-Hansen, D.E.; Jarbol, D.E.; Sondergaard, J.; Larsen, P.V. Barriers to lifestyle changes for prevention of cardiovascular disease—A survey among 40–60-year old Danes. BMC Cardiovasc. Disord. 2017, 17, 245. [Google Scholar] [CrossRef] [Green Version]
- Fuller, H.; Alberti, H. Barriers to lifestyle changes in people with diabetes. Br. J. Gen. Pract. 2017, 67, 61. [Google Scholar] [CrossRef]
- Skoglund, G.; Nilsson, B.B.; Olsen, C.F.; Bergland, A.; Hilde, G. Facilitators and barriers for lifestyle change in people with prediabetes: A meta-synthesis of qualitative studies. BMC Public Health 2022, 22, 553. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, C.A.; Karfopoulou, E.; Yannakoulia, M. Weight regaining: From statistics and behaviors to physiology and metabolism. Metabolism 2015, 64, 1395–1407. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; Specter, S.E. Poverty and obesity: The role of energy density and energy costs. Am. J. Clin. Nutr. 2004, 79, 6–16. [Google Scholar] [CrossRef]
- Drewnowski, A. Obesity, diets, and social inequalities. Nutr. Rev. 2009, 67 (Suppl. S1), S36–S39. [Google Scholar] [CrossRef]
- Hill, D.; Conner, M.; Clancy, F.; Moss, R.; Wilding, S.; Bristow, M.; O’Connor, D.B. Stress and eating behaviours in healthy adults: A systematic review and meta-analysis. Health Psychol. Rev. 2022, 16, 280–304. [Google Scholar] [CrossRef]
- Bremner, J.D.; Moazzami, K.; Wittbrodt, M.T.; Nye, J.A.; Lima, B.B.; Gillespie, C.F.; Rapaport, M.H.; Pearce, B.D.; Shah, A.J.; Vaccarino, V. Diet, Stress and Mental Health. Nutrients 2020, 12, 2428. [Google Scholar] [CrossRef]
- Schweren, L.J.S.; Larsson, H.; Vinke, P.C.; Li, L.; Kvalvik, L.G.; Arias-Vasquez, A.; Haavik, J.; Hartman, C.A. Diet quality, stress and common mental health problems: A cohort study of 121,008 adults. Clin. Nutr. 2021, 40, 901–906. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Back, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Georgousopoulou, E.N.; Pitsavos, C.; Chrysohoou, C.; Skoumas, I.; Pitaraki, E.; Georgiopoulos, G.A.; Ntertimani, M.; Christou, A.; Stefanadis, C.; et al. Exploring the path of Mediterranean diet on 10-year incidence of cardiovascular disease: The ATTICA study (2002–2012). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 327–335. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br. J. Pharmacol. 2020, 177, 1241–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvaniti, F.; Panagiotakos, D.B.; Pitsavos, C.; Zampelas, A.; Stefanadis, C. Dietary habits in a Greek sample of men and women: The ATTICA study. Cent Eur. J. Public Health 2006, 14, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Chrysohoou, C.; Pitsavos, C.; Stefanadis, C. Association between the prevalence of obesity and adherence to the Mediterranean diet: The ATTICA study. Nutrition 2006, 22, 449–456. [Google Scholar] [CrossRef] [PubMed]
Mediterranean Diet Trajectories | p-Value * | ||||
---|---|---|---|---|---|
Low–Low (n = 687) | Low–High (n = 233) | High–Low (n = 1179) | High–High (n = 484) | ||
Age, years | 55.5 ± 13.5 a | 54.7 ± 10.7 a | 43.2 ± 12.0 b | 35.2 ± 10.0 c | <0.001 |
Age group, n (%) | |||||
<35 years 35–65 years >65 years | 49 (7.1) a 442 (64.3) a 196 (28.5) a | 4 (1.7) b 187 (80.3) b 42 (18.0) b | 284 (24.1) c 842 (71.4) c 53 (4.5) c | 240 (49.6) d 243 (50.2) d 1 (0.2) d | <0.001 |
Males, n (%) | 500 (72.8) a | 190 (81.5) b | 524 (44.4) c | 76 (15.7) d | <0.001 |
Marital status, n (%) | |||||
never married married divorced widowed | 64 (9.3) a 560 (81.6) a 25 (3.6) 38 (5.5) a | 13 (5.6) a 208 (89.3) a 4 (1.7) 8 (3.4) a,b | 257 (21.8) b 839 (71.2) b 47 (4.9) 36 (3.1) b | 206 (42.6) c 260 (53.7) c 14 (2.9) 4 (0.8) c | <0.001 |
Education, years | 11.0 ± 4.0 a | 11.6 ± 3.9 a | 12.3 ± 3.6 b | 13.3 ± 3.0 c | <0.001 |
Educational level, n (%) | |||||
low medium high | 202 (29.4) a 301 (43.8) 184 (26.8) a | 58 (24.9) a 103 (44.2) 72 (30.9) a,b | 190 (16.1) b 572 (48.5) 417 (35.4) b | 32 (6.6) c 229 (47.4) 223 (46.0) c | <0.001 |
Financial status, n (%) | |||||
low medium high very high | 113 (16.4) a 226 (32.9) 281 (40.9) a 67 (9.8) a | 17 (7.6) b 67 (28.7) 104 (44.6) a 45 (19.1) b | 258 (21.9) a,c 380 (32.2) 403 (34.2) a,b 138 (11.7) a,b | 136 (28.1) c 184 (38.0) 125 (25.8) b 39 (8.1) a | <0.001 |
SES, n (%) | |||||
low medium high | 165 (24.0) a 345 (50.2) 177 (25.8) a | 44 (19.1) a,b 113 (48.4) 76 (32.5) a,b | 157 (13.3) b 641 (54.4) 381 (32.3) a,b | 28 (5.8) c 266 (54.9) 190 (39.3) b | <0.001 |
Mediterranean Diet Trajectories | p-Value * | ||||
---|---|---|---|---|---|
Low–Low (n = 687) | Low–High (n = 233) | High–Low (n = 1179) | High–High (n = 484) | ||
Anthropometric indices | |||||
BMI, kg/m2 | 29.5 ± 4.2 a | 29.9 ± 4.2 a | 25.6 ± 3.3 b | 22.4 ± 2.5 c | <0.001 |
BMI status, n (%) | |||||
underweight normal-weight overweight obese | 1 (0.1) a 69 (10.0) a 354 (51.5) a 263 (38.4) a | 0 (0.0) a 22 (9.4) a 108 (46.4) a 103 (44.2) a | 13 (1.1) a 488 (41.4) b 581 (49.3) a 97 (8.2) b | 21 (4.3) b 396 (81.8) c 64 (13.3) b 3 (0.6) c | <0.001 |
WC, cm | |||||
males females | 102.8 ± 11.7 a 97.0 ± 14.5 a | 103.8 ± 11.2 a 99.4 ± 12.4 a | 93.3 ± 11.2 b 83.2 ± 11.8 b | 83.9 ± 9.2 c 76.3 ± 9.8 c | <0.001 <0.001 |
Increased WC, n (%) | 460 (67.0) a | 169 (72.5) a | 545 (46.3) b | 109 (22.6) c | <0.001 |
WHtR | 0.60 ± 0.07 a | 0.60 ± 0.07 a | 0.52 ± 0.07 b | 0.46 ± 0.06 c | <0.001 |
Central obesity, n (%) | 513 (74.7) a | 191 (82.0) a | 656 (62.1) b | 94 (19.4) c | <0.001 |
Lifestyle habits | |||||
Current smokers, n (%) | 250 (36.4) a | 91 (39.1) a,b | 520 (44.1) b | 223 (46.2) b | 0.002 |
Ever smokers, n (%) | 373 (54.3) | 145 (62.2) | 644 (54.7) | 259 (53.6) | 0.140 |
Pack-years | 540 (223, 900) a | 600 (300, 1020) a | 320 (143, 600) b | 180 (60, 375) c | <0.001 |
Energy intake, kcal/d | 2499 ± 975 a | 2385 ± 883 a,b | 2424 ± 951 a | 2109 ± 879 b | 0.001 |
MET-min/week | 231 (149, 1519) a | 231 (149, 1377) a | 198 (149, 735) a | 330 (149, 1406) b | 0.050 |
Physical activity status, n (%) | |||||
minimally active moderately active highly active | 415 (60.4) 107 (15.6) a 165 (24.0) | 137 (58.8) 48 (20.6) a,b 48 (20.6) | 726 (61.6) 210 (17.8) a,b 243 (20.6) | 278 (57.5) 113 (23.3) b 93 (19.2) | 0.022 |
Depression and anxiety symptoms | |||||
ZDRS (20–80) | 34.5 ± 7.2 a,b | 33.1 ± 5.5 a | 35.6 ± 7.8 b | 36.2 ± 7.5 b | 0.028 |
STAI (20–80) | 40.6 ± 11.6 | 38.8 ± 11.4 | 41.2 ± 11.4 | 40.6 ± 12.5 | 0.524 |
Mediterranean Diet Trajectories | p-Value * | ||||
---|---|---|---|---|---|
Low–Low (n = 687) | Low–High (n = 233) | High–Low (n = 1179) | High–High (n = 484) | ||
Cardiometabolic indices | |||||
Glucose, mg/dL | 93 (85, 106) a | 97 (87, 108) a | 89 (80, 97) b | 86 (78, 94) c | <0.001 |
Insulin, μU/ml | 13.6 (12.6, 14.9) a | 14.1 (12.9, 15.3) a | 12.4 (11.5, 13.6) b | 11.5 (10.8, 12.3) c | <0.001 |
HOMA-IR | 3.12 (2.6, 3.9) a | 3.33 (2.77, 4.09) a | 2.72 (2.31, 3.20) b | 2.44 (2.10, 2.87) c | <0.001 |
TC, mg/dL | 201 (176, 230) a | 198 (177, 225) a | 190 (163, 219) b | 174 (153, 202) c | <0.001 |
LDL-C, mg/dL | 129 (107, 153) a | 126 (110, 150) a | 119 (97, 146) b | 106 (85, 131) c | <0.001 |
HDL-C, mg/dL | 43 (37, 51) a | 42 (35, 48) a | 48 (40, 57) b | 52 (44, 61) c | <0.001 |
TG, mg/dL | 123 (91, 172) a | 124 (93, 182) a | 96 (67, 140) b | 73 (54, 100) c | <0.001 |
hs-CRP, mg/L | 1.43 (0.66, 3.08) a | 1.51 (0.67, 2.95) a | 1.05 (0.47, 2.25) b | 0.60 (0.28, 1.33) c | <0.001 |
SBP, mm Hg | 132 ± 19 a | 131 ± 17 a | 122 ± 17 b | 112 ± 14 c | <0.001 |
DBP, mm Hg | 83 ± 11 a | 84 ± 11 a | 79 ± 11 b | 72 ± 10 c | <0.001 |
Medical status | |||||
Family history of HCL, n (%) | 208 (66.9) a,b | 77 (58.3) a | 479 (72.6) b | 225 (76.5) b | <0.001 |
HCL, n (%)-baseline | 342 (49.8) a | 114 (48.9) a,b | 469 (39.8) b | 125 (25.9) c | <0.001 |
HCL, n (%)-10 years | 410 (59.7) a | 134 (57.5) a,b | 553 (46.9) b | 155 (32.0) c | <0.001 |
Family history of HTN, n (%) | 86 (12.5) | 36 (15.5) | 181 (15.4) | 82 (16.9) | 0.174 |
HTN, n (%)-baseline | 314 (45.7) a | 103 (46.8) a | 297 (27.1) b | 41 (8.5) c | <0.001 |
HTN, n (%)-10 years | 397 (57.8) a | 128 (54.9) a | 392 (33.2) b | 62 (12.8) c | <0.001 |
MetS, n (%)-baseline | 238 (34.6) a | 97 (41.6) a | 181 (15.4) b | 14 (2.9) c | <0.001 |
MetS, n (%)-10 years | 486 (70.7) a | 172 (73.8) a | 622 (52.8) b | 163 (33.7) c | <0.001 |
Family history of T2DM, n (%) | 169 (24.6) | 78 (33.5) | 304 (25.8) | 128 (26.4) | 0.775 |
T2DM, n (%)-baseline | 104 (15.1) a | 34 (14.6) a | 56 (4.7) b | 3 (0.6) c | <0.001 |
T2DM, n (%)-10 years | 173 (25.2) a | 71 (30.5) a | 128 (10.9) b | 16 (3.3) c | <0.001 |
Family history of CVD, n (%) | 156 (22.7) | 60 (25.8) | 317 (26.9) | 127 (26.2) | 0.534 |
10-year incidence of cardiometabolic diseases | |||||
HCL 10-year incidence, n (%) | 114 (45.4) a | 37 (40.2) a,b | 155 (32.8) b | 46 (20.2) c | <0.001 |
HTN 10-year incidence, n (%) | 121 (48.0) a | 31 (33.7) a,b | 139 (25.4) b | 29 (11.0) c | <0.001 |
MetS 10-year incidence, n (%) | 248 (55.2) a | 75 (55.1) a | 442 (44.4) b | 149 (31.7) c | <0.001 |
T2DM 10-year incidence, n (%) | 69 (19.2) a | 37 (25.5) a | 72 (10.4) b | 13 (4.6) c | <0.001 |
CVD 10-year incidence, n (%) | 153 (30.1) a | 56 (32.6) a | 93 (10.0) b | 15 (3.7) c | <0.001 |
Total Sample (n = 2583) | OR | 95% CI | p-Value |
---|---|---|---|
Age (per 1 year increase) | 0.942 | 0.927–0.956 | <0.001 |
Sex (males vs. females) | 0.163 | 0.110–0.241 | <0.001 |
SES (medium vs. low) (high vs. low) | 1.121 1.404 | 0.601–2.093 0.744–2.649 | 0.719 0.295 |
Smoking (current smokers vs. non-smokers) | 0.914 | 0.657–1.272 | 0.595 |
BMI (per 1 kg/m2 increase) | 0.756 | 0.715–0.799 | <0.001 |
Physical activity (per 100 MET-min/week increase) | 1.000 | 0.999–1.020 | 0.067 |
<40 years (n = 1304) | OR | 95% CI | p-Value |
Sex (males vs. females) | 0.192 | 0.128–0.288 | <0.001 |
SES (medium vs. low) (high vs. low) | 0.686 0.729 | 0.304–1.550 0.320–1.663 | 0.365 0.453 |
Smoking (current smokers vs. non-smokers) | 0.954 | 0.669–1.361 | 0.797 |
BMI (per 1 kg/m2 increase) | 0.777 | 0.734–0.822 | <0.001 |
Physical activity (per 100 MET-min/week increase) | 1.014 | 1.000–1.025 | 0.012 |
≥40 years (n = 1279) | OR | 95% CI | p-Value |
Sex (males vs. females) | 0.853 | 0.547–1.392 | 0.991 |
SES (medium vs. low) (high vs. low) | 5.070 5.389 | 1.491–17.24 1.379–21.05 | 0.025 0.009 |
Smoking (current smokers vs. non-smokers) | 0.674 | 0.289–1.576 | 0.363 |
BMI (per 1 kg/m2 increase) | 0.521 | 0.430–0.631 | <0.001 |
Physical activity (per 100 MET-min/week increase) | 1.000 | 0.999–1.039 | 0.650 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgoulis, M.; Georgousopoulou, E.N.; Chrysohoou, C.; Pitsavos, C.; Panagiotakos, D.B. Longitudinal Trends, Determinants, and Cardiometabolic Impact of Adherence to the Mediterranean Diet among Greek Adults. Foods 2022, 11, 2389. https://doi.org/10.3390/foods11162389
Georgoulis M, Georgousopoulou EN, Chrysohoou C, Pitsavos C, Panagiotakos DB. Longitudinal Trends, Determinants, and Cardiometabolic Impact of Adherence to the Mediterranean Diet among Greek Adults. Foods. 2022; 11(16):2389. https://doi.org/10.3390/foods11162389
Chicago/Turabian StyleGeorgoulis, Michael, Ekavi N. Georgousopoulou, Christina Chrysohoou, Christos Pitsavos, and Demosthenes B. Panagiotakos. 2022. "Longitudinal Trends, Determinants, and Cardiometabolic Impact of Adherence to the Mediterranean Diet among Greek Adults" Foods 11, no. 16: 2389. https://doi.org/10.3390/foods11162389