Structure Characterization and Potential Probiotic Effects of Sorghum and Oat Resistant Dextrins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Structure Characterization
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. X-ray Diffraction (XRD)
2.4. Physicochemical Properties
2.4.1. Hydration Properties
2.4.2. Differential Scanning Calorimetry (DSC)
2.5. In Vitro Digestibility
2.6. Probiotics Effect In Vitro
2.7. Statistical Analysis
3. Results and Discussion
3.1. Granule Morphology
3.2. FTIR Spectra
3.3. X-ray Ray Diffraction Analysis
3.4. The WSI and the SP
3.5. DSC Analysis
3.6. In Vitro Digestibility
3.7. Probiotics Effect In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.J.; Cai, L.M.; Doutch, J.; Gilbert, E.P.; Shi, Y.C. Structural changes from native waxy maize starch granules to cold-water-soluble pyrodextrin during thermal treatment. J. Agric. Food. Chem. 2014, 62, 4186–4194. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.J.; Shi, Y.C. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy. Carbohydr. Polym. 2016, 15, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.M.; Lopes, E.S.; Moreira, A.S.P.; Simoes, J.; Coimbra, M.A.; Domingues, R.M. Formation of type 4 resistant starch and maltodextrins from amylose and amylopectin upon dry heating: A model study. Carbohydr. Polym. 2016, 141, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slizewska, K.; Libudzisz, Z.; Barczynska, R.; Kapusniak, J.; Zdunczyk, Z.; Juskiewicz, J. Dietary resistant dextrins positively modulate fecal and cecal microbiota composition in young rats. J. Therm. Anal. Calorim. 2015, 62, 677–681. [Google Scholar]
- Mateo-Gallego, R.; Perez-Calahorra, S.; Lamiquiz-Moneo, I.; Marco-Benedi, V.; Bea, A.M.; Fumanal, A.J.; Prieto-Martin, A.; Laclaustra, M.; Cenarro, A.; Civeira, F. Effect of an alcohol-free beer enriched with isomaltulose and a resistant dextrin on insulin resistance in diabetic patients with overweight or obesity. Clin. Nutr. 2020, 39, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Kapusniak, K.; Nebesny, E. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry. Carbohydr. Polym. 2017, 172, 152–158. [Google Scholar]
- Laurentin, A.; Cardenas, M.; Ruales, J.; Perez, E.; Tovar, J. Preparation of indigestible pyrodextrins from different starch sources. J. Agric. Food Chem. 2003, 51, 5510–5515. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, X.L.; Sun, Y.; Shi, J.L.; Xu, X.J.; Shi, Y.C. Hypoglycemic effects of pyrodextrins with different molecular weights and digestibilities in mice with diet-induced obesity. J. Agric. Food Chem. 2018, 66, 2988–2995. [Google Scholar] [CrossRef]
- Weil, W.; Weil, R.C.; Keawsompong, S.; Sriroth, K.; Seib, P.A.; Shi, Y.C. Pyrodextrins from waxy and normal tapioca starches: Molecular structure and in vitro digestibility. Carbohydr. Polym. 2021, 252, 117140. [Google Scholar] [CrossRef]
- Xu, J.C.; Kuang, Q.R.; Wang, K.; Zhou, S.M.; Wang, S.; Liu, X.X.; Wang, S.J. Insights into molecular structure and digestion rate of oat starch. Food Chem. 2017, 220, 25–30. [Google Scholar] [CrossRef]
- Punia, S.; Sandhu, K.S.; Dhull, S.B.; Siroha, A.K.; Purewal, S.S.; Kaur, M.; Kidwai, M.K. Oat starch: Physico-chemical, morphological, rheological characteristics and its applications—A review. Int. J. Biol. Macromol. 2020, 154, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Sodhi, N.S.; Dhillon, B.; Chang, Y.H.; Lin, J.H. Physicochemical and structural characteristics of sorghum starch as affected by acid-ethanol hydrolysis. J. Food Meas. Charact. 2021, 15, 2377–2385. [Google Scholar] [CrossRef]
- Barczynska, R.; Jochym, K.; Slizewska, K.; Kapusniak, J.; Libudzisz, Z. The effect of citric acid-modified enzyme-resistant dextrin on growth and metabolism of selected strains of probiotic and other intestinal bacteria. J. Funct. Foods 2010, 2, 126–133. [Google Scholar] [CrossRef]
- Dong, J.l.; Huang, L.; Chen, W.W.; Zhu, Y.Y.; Dun, B.Q.; Shen, R.L. Effect of heat-moisture treatments on digestibility and physicochemical property of whole quinoa flour. Foods 2021, 10, 3042. [Google Scholar] [CrossRef]
- Al-Roomi, F.W.; Al-Sahlany, S.T. Identification and characterization of xanthan gum produced from date juice by a local isolate of bacteria xanthomonas campestris. Basrah J. Agric. Sci. 2022, 35, 35–49. [Google Scholar] [CrossRef]
- Da Silva, L.R.; de Carvalho, C.W.P.; Velasco, J.I.; Fakhouri, F.M. Extraction and characterization of starches from pigmented rice. Int. J. Biol. Macromol. 2020, 156, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Kapelko-Zeberska, M.; Zieba, T.; Spychaj, R.; Gryszkin, A. Selected rheological properties of rs3/4 type resistant starch. Nephron Clin. Pract. 2017, 67, 293–300. [Google Scholar]
- Yu, W.; Zou, W.; Dhital, S.; Peng, W.; Gilbert, R.G. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour. Food Chem. 2017, 241, 493–501. [Google Scholar] [CrossRef]
- Chow, J.; Panasevich, M.R.; Alexander, D.; Boler, B.M.V.; Serao, M.C.R.; Faber, T.A.; Bauer, L.L.; Fahey, G.C. Fecal metabolomics of healthy breast-fed versus formula-fed infants before and during in vitro batch culture fermentation. J. Proteome Res. 2014, 13, 2534–2542. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Wang, C.; Zhang, Y.A.R.; Bai, X.; Zhang, Y.; Zhang, J. Effects of high hydrostatic pressure on microstructure, physicochemical properties and in vitro digestibility of oat starch/β-glucan mixtures. Int. J. Food Sci. Technol. 2021, 57, 1888–1901. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; Sobral, P.J.A.; Menegalli, F.C. Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll. 2013, 30, 681–690. [Google Scholar] [CrossRef]
- Soest, J.J.G.V.; Tournois, H.; Wit, D.D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.; Ali, T.M.; Mustafa, G.; Hasnain, A. Structural, functional and digestibility characteristics of sorghum and corn starch extrudates (RS3) as affected by cold storage time. Int. J. Biol. Macromol. 2020, 164, 3048–3054. [Google Scholar] [CrossRef]
- Lee, D.J.; Kim, J.M.; Lim, S.T. Characterization of resistant waxy maize dextrins prepared by simultaneous debranching and crystallization. Food Hydrocoll. 2020, 112, 106315. [Google Scholar] [CrossRef]
- Cabrera-Ramírez, A.H.; Morales-Sánchez, E.; Méndez-Montealvo, G.; Velazquez, G.; Rodríguez-García, M.E.; Villamiel, M.; Gaytán-Martínez, M. Structural changes in popped sorghum starch and their impact on the rheological behavior. Int. J. Biol. Macromol. 2021, 186, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.M.L.; Wong, K.S.; Yoo, S.H.; Jane, J.L. Structural and functional characteristics of selected soft wheat starches. Cereal Chem. 2002, 79, 243–248. [Google Scholar] [CrossRef]
- He, R.; Shang, W.T.; Pan, Y.G.; Xiang, D.; Yun, Y.H.; Zhang, W.M. Effect of drying treatment on the structural characterizations and physicochemical properties of starch from canistel (Lucuma nervosa A. DC). Int. J. Biol. Macromol. 2021, 167, 539–546. [Google Scholar] [CrossRef]
- Trithavisup, K.; Krusong, K.; Tananuwong, K. In-depth study of the changes in properties and molecular structure of cassava starch during resistant dextrin preparation. Food Chem. 2019, 297, 124996. [Google Scholar] [CrossRef]
- Barczynska, R.; Slizewska, K.; Jochym, K.; Kapusniak, J.; Libudzisz, Z. The tartaric acid-modified enzyme-resistant dextrin from potato starch as potential prebiotic. J. Funct. Foods 2012, 4, 954–962. [Google Scholar] [CrossRef]
Temperature (°C) | WSI (g·100 g−1) | SP (g·100 g−1) | ||||||
---|---|---|---|---|---|---|---|---|
SS | SRD | OS | ORD | SS | SRD | OS | ORD | |
4 | 3.71 ± 0.05 a | 90.32 ± 0.12 a | 4.19 ± 0.02 a | 91.50 ± 0.21 a | 1.03 ± 0.05 a | 2.15 ± 0.09 a | 1.00 ± 0.02 a | 1.12 ± 0.10 a |
25 | 3.72 ± 0.02 a | 91.21 ± 0.22 b | 4.25 ± 0.09 a | 91.66 ± 0.25 a | 1.03 ± 0.02 a | 2.45 ± 0.11 b | 1.00 ± 0.09 a | 1.26 ± 0.08 a |
37 | 3.90 ± 0.04 b | 92.15 ± 0.13 c | 5.56 ± 0.01 b | 92.21 ± 0.16 b | 1.02 ± 0.04 a | 2.64 ± 0.08 b | 1.02 ± 0.01 a | 1.37 ± 0.14 ab |
100 | 17.84 ± 0.10 c | 92.65 ± 0.21 d | 20.72 ± 0.06 c | 92.87 ± 0.14 c | 16.48 ± 0.10 b | 3.21 ± 0.12 c | 15.45 ± 0.06 b | 1.58 ± 0.12 b |
Samples | To/°C | TP/°C | TC/°C | ΔHg/J·g−1 |
---|---|---|---|---|
SS | 65.01 ± 0.11 a | 69.89 ± 0.07 a | 75.94 ± 0.56 a | 14.03 ± 0.54 a |
SRD | —— | —— | —— | —— |
OS | 57.30 ± 0.01 b | 61.10 ± 0.05 b | 65.43 ± 0.03 b | 9.40 ± 0.31 b |
ORD | —— | —— | —— | —— |
Concentration (mg/mL) | Lactobacillus plantarum | Lactobacillus acidophilus | Lactobacillus delbrueckii | |
---|---|---|---|---|
log (CFU/mL) | ||||
SRD | 0 | 8.87 ± 0.01 a | 8.91 ± 0.01 a | 8.83 ± 0.01 a |
4 | 9.09 ± 0.02 d | 8.93 ± 0.01 ab | 8.90 ± 0.01 cd | |
8 | 9.15 ± 0.01 g | 8.97 ± 0.01 c | 8.98 ± 0.01 fg | |
12 | 9.09 ± 0.02 d | 9.01 ± 0.02 ef | 9.03 ± 0.01 h | |
16 | 9.05 ± 0.01 c | 9.11 ± 0.01 i | 9.08 ± 0.01 i | |
20 | 9.04 ± 0.02 bc | 9.06 ± 0.01 g | 8.97 ± 0.01 ef | |
ORD | 0 | 8.87 ± 0.01 a | 8.91 ± 0.01 a | 8.83 ± 0.01 a |
4 | 9.10 ± 0.01 de | 8.99 ± 0.01 de | 8.88 ± 0.01 bc | |
8 | 9.13 ± 0.01 fg | 9.09 ± 0.01 h | 8.96 ± 0.01 e | |
12 | 9.14 ± 0.01 g | 9.13 ± 0.01 j | 9.00 ± 0.02 g | |
16 | 9.18 ± 0.01 h | 9.06 ± 0.01 g | 9.04 ± 0.01 h | |
20 | 9.11 ± 0.01 ef | 8.98 ± 0.01 cd | 8.99 ± 0.01 fg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhang, T.; Ma, Q.; Zhu, Y.; Shen, R. Structure Characterization and Potential Probiotic Effects of Sorghum and Oat Resistant Dextrins. Foods 2022, 11, 1877. https://doi.org/10.3390/foods11131877
Chen W, Zhang T, Ma Q, Zhu Y, Shen R. Structure Characterization and Potential Probiotic Effects of Sorghum and Oat Resistant Dextrins. Foods. 2022; 11(13):1877. https://doi.org/10.3390/foods11131877
Chicago/Turabian StyleChen, Wenwen, Ting Zhang, Qi Ma, Yingying Zhu, and Ruiling Shen. 2022. "Structure Characterization and Potential Probiotic Effects of Sorghum and Oat Resistant Dextrins" Foods 11, no. 13: 1877. https://doi.org/10.3390/foods11131877
APA StyleChen, W., Zhang, T., Ma, Q., Zhu, Y., & Shen, R. (2022). Structure Characterization and Potential Probiotic Effects of Sorghum and Oat Resistant Dextrins. Foods, 11(13), 1877. https://doi.org/10.3390/foods11131877