Bioactive Lipids of Seaweeds from the Portuguese North Coast: Health Benefits versus Potential Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Lipid Extraction and Determination of Total Lipids in Seaweed
2.3. Fatty Acids Profile Determination
2.4. Nutritional Quality Indices
2.5. Determination of AHCs
2.6. Determination of PAHs
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Lipids in Seaweeds
3.2. Lipidic Profile of Seaweed
3.3. Nutritional Indices of Seaweed
3.4. AHCs in Seaweeds
3.5. PAHs in Seaweeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Punín Crespo, M.O.; Lage Yusty, M.A. Determination of aliphatic hydrocarbons in the alga Himanthalia elongata. Ecotoxicol. Environ. Saf. 2004, 57, 226–230. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Patarra, R.F.; Neto, A.I.; Baptista, J. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem. 2014, 164, 128–135. [Google Scholar] [CrossRef]
- Agregán, R.; Munekata, P.E.; Domínguez, R.; Carballo, J.; Franco, D.; Lorenzo, J.M. Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil unde. Food Res. Int. 2017, 99, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.M.; Moane, S.; Collins, C.; Beletskaya, T.; Thomas, O.P.; Duarte, A.W.F.; Nobre, F.S.; Owoyemi, I.O.; Pagnocca, F.C.; Sette, L.D.; et al. Sustainable production of biologically active molecules of marine based origin. N. Biotechnol. 2013, 30, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Narayan, B.; Miyashita, K.; Hosakawa, M. Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—A review. Food Rev. Int. 2006, 22, 291–307. [Google Scholar] [CrossRef]
- Bergé, J.-P. Gilles Barnathan, Fatty Acids from Lipids of Marine Organisms: Molecular Biodiversity, Roles as Biomarkers, Biologically Active Compounds, and Economical Aspects. Adv. Biochem. Engin. Biotechnol. 2005, 96, 49–125. [Google Scholar] [CrossRef] [Green Version]
- Otero, P.; López-Martínez, M.I.; García-Risco, M.R. Application of pressurized liquid extraction (PLE) to obtain bioactive fatty acids and phenols from Laminaria ochroleuca collected in Galicia (NW Spain). J. Pharm. Biomed. Anal. 2019, 164, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Punín Crespo, M.O.; Cam, D.; Gagni, S.; Lombardi, N.; Lage Yusty, M.A. Extraction of hydrocarbons from seaweed samples using sonication and microwave-assisted extraction: A comparative study. J. Chromatogr. Sci. 2006, 44, 615–618. [Google Scholar] [CrossRef]
- Montone, R.C.; Taniguchi, S.; Sericano, J.; Weber, R.R.; Lara, W.H. Determination of polychlorinated biphenyls in Antarctic macroalgae Desmarestia sp. Sci. Total Environ. 2001, 277, 181–186. [Google Scholar] [CrossRef]
- Timmis, K.; McGenity, T.; van der Meer, J. Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin, Germany, 2010. [Google Scholar]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670–699. [Google Scholar] [CrossRef]
- El Nemr, A.; El-Sadaawy, M.M.; Khaled, A.; Draz, S.O. Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: Assessment and source recognition of petroleum hydrocarbons. Environ. Monit. Assess. 2013, 185, 4571–4589. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on Mineral Oil Hydrocarbons in Food. EFSA J. 2012, 10, 2704. [Google Scholar] [CrossRef]
- European Commission Commission Regulation (EC) 1151/2009 imposing special conditions governing the import of sunflower oil originating in or consigned from Ukraine due to contamination risks by mineral oil. Off. J. Eur. Union 2009, 2080, 2008–2011.
- US EPA. Polycyclic Aromatic Hydrocarbons (PAHs)-EPA Fact Sheet; National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 2008. [Google Scholar]
- International Agency for Research on Cancer IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Volume 82: Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Traditional-Herbal-Medicines-Some-Mycotoxins-Naphthalene-And-Styrene-2002 (accessed on 28 March 2021).
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Volume 92: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures; IARC Press: Lyon, France, 2010; Volume 92. [Google Scholar]
- Wurl, O.; Obbard, J.P. A review of pollutants in the sea-surface microlayer (SML): A unique habitat for marine organisms. Mar. Pollut. Bull. 2004, 48, 1016–1030. [Google Scholar] [CrossRef] [PubMed]
- EU Regulation (EU). No. 835/2011 of 19 August 2011 amending Regulation (EC) No. 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union 2011, L215, 4–8. [Google Scholar]
- Kirso, U.; Irha, N. Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment. Proc. Ecotoxicol. Environ. Saf. 1998, 41, 83–89. [Google Scholar] [CrossRef]
- Pavoni, B.; Caliceti, M.; Sperni, L.; Sfriso, A. Organic micropollutants (PAHs, PCBs, pesticides) in seaweeds of the lagoon of Venice. Oceanol. Acta 2003, 26, 585–596. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Fogaça, F.H.; Soares, C.; Oliveira, M.; Alves, R.N.; Maulvault, A.L.; Barbosa, V.L.; Anacleto, P.; Magalhães, J.A.; Bandarra, N.M.; Ramalhosa, M.J.; et al. Polycyclic aromatic hydrocarbons bioaccessibility in seafood: Culinary practices effects on dietary exposure. Environ. Res. 2018, 164, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lage-Yusty, M.A.; Alvarez-Pérez, S.; Punín-Crespo, M.O. Supercritical fluid extraction of polycyclic aromatic hydrocarbons from seaweed samples before and after the prestige oil spill. Bull. Environ. Contam. Toxicol. 2009, 82, 158–161. [Google Scholar] [CrossRef]
- Punín Crespo, M.O.; Lage Yusty, M.A. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of aliphatic hydrocarbons in seaweed samples. Ecotoxicol. Environ. Saf. 2006, 64, 400–405. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Moltó-Puigmartí, C.; Castellote, A.I.; López-Sabater, M.C. Determination of conjugated linoleic acid in human plasma by fast gas chromatography. J. Chromatogr. A 2007, 1157, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 1–24. [Google Scholar]
- Ramalhosa, M.J.; Paíga, P.; Morais, S.; Sousa, A.M.M.; Gonçalves, M.P.; Delerue-Matos, C.; Oliveira, M.B.P.P. Analysis of polycyclic aromatic hydrocarbons in fish: Optimisation and validation of microwave-assisted extraction. Food Chem. 2012, 135, 234–242. [Google Scholar] [CrossRef]
- Ramalhosa, M.J.; Paíga, P.; Morais, S.; Delerue-Matos, C.; Oliveira, M.B.P.P. Analysis of polycyclic aromatic hydrocarbons in fish: Evaluation of a quick, easy, cheap, effective, rugged, and safe extraction method. J. Sep. Sci. 2009, 32, 3529–3538. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. J. Appl. Phycol. 2014, 26, 451–463. [Google Scholar] [CrossRef]
- Patarra, R.F.; Leite, J.; Pereira, R.; Baptista, J.; Neto, A.I. Fatty acid composition of selected macrophytes. Nat. Prod. Res. 2013, 27, 665–669. [Google Scholar] [CrossRef]
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, M.; Franchi, M.; Monteleone, M.; Caroppo, C. The red seaweed gracilaria gracilis as a multi products source. Mar. Drugs 2013, 11, 3754–3776. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Kendel, M.; Wielgosz-Collin, G.; Bertrand, S.; Roussakis, C.; Bourgougnon, N.B.; Bedoux, G. Lipid composition, fatty acids and sterols in the seaweeds ulva armoricana, and solieria chordalis from brittany (France): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Mar. Drugs 2015, 13, 5606–5628. [Google Scholar] [CrossRef]
- Khairy, H.M.; El-Shafay, S.M. Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 2013, 55, 435–452. [Google Scholar] [CrossRef] [Green Version]
- Boulom, S.; Robertson, J.; Hamid, N.; Ma, Q.; Lu, J. Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough Sounds, New Zealand. Food Chem. 2014, 161, 261–269. [Google Scholar] [CrossRef]
- Nelson, M.M.; Phleger, C.F.; Nichols, P.D. Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean. Bot. Mar. 2002, 45, 58–65. [Google Scholar] [CrossRef]
- Silva, G.; Pereira, R.B.; Valentão, P.; Andrade, P.B.; Sousa, C. Distinct fatty acid profile of ten brown macroalgae. Rev. Bras. Farmacogn. 2013, 23, 608–613. [Google Scholar] [CrossRef] [Green Version]
- Van Ginneken, V.J.T.; Helsper, J.P.F.G.; De Visser, W.; Van Keulen, H.; Brandenburg, W.A. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cyril, J.; Powell, G.L.; Duncan, R.R.; Baird, W. V Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Sci. 2002, 42, 2031–2037. [Google Scholar] [CrossRef]
- Oh, S.; Lee, E.; Choe, E. Light effects on lipid oxidation, antioxidants, and pigments in dried laver (Porphyra) during storage. Food Sci. Biotechnol. 2014, 23, 701–709. [Google Scholar] [CrossRef]
- Dellatorre, F.G.; Avaro, M.G.; Commendatore, M.G.; Arce, L.; Díaz de Vivar, M.E. The macroalgal ensemble of Golfo Nuevo (Patagonia, Argentina) as a potential source of valuable fatty acids for nutritional and nutraceutical purposes. Algal Res. 2020, 45, 101726. [Google Scholar] [CrossRef]
- Salvatori, G.; Pantaleo, L.; Di Cesare, C.; Maiorano, G.; Filetti, F.; Oriani, G. Fatty acid composition and cholesterol content of muscles as related to genotype and vitamin E treatment in crossbred lambs. Meat Sci. 2004, 67, 45–55. [Google Scholar] [CrossRef]
- Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M.K.; Gupta, V.; Reddy, C.R.K.; Jha, B. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 2011, 23, 797–810. [Google Scholar] [CrossRef]
- Clark, R.C.; Blumer, M. Distribution of n-parafins in marine organisms and sediment. Limnol. Oceanogr. 1967, 12, 79–87. [Google Scholar] [CrossRef]
- Banach, J.L.; Hoek-van den Hil, E.F.; van der Fels-Klerx, H.J. Food safety hazards in the European seaweed chain. Compr. Rev. Food Sci. Food Saf. 2020, 19, 332–364. [Google Scholar] [CrossRef] [PubMed]
Seaweed Collected | Species | Total Lipids (% DW) | ||
---|---|---|---|---|
This Work | Literature | Season, Year, Reference | ||
Su | A. nodosum | 2.4 ± 0.1 b | 3 ± 1 | Sp/Su 2012, [29] |
Au | 1.5 ± 0.2 c | 2 ± 1 | Au/Wi 2011, [29] | |
Cm a | 3.2 ± 0.4 a | |||
Su | C. crispus | 1.2 ± 0.5 b | 0.9 ± 0.2 | Sp/Su 2012, [29] |
Au | 0.7 ± 0.1 c | 0.9 ± 0.2 | Au/Wi 2011, [29] | |
Cm a | 2.0 ± 0.1 a | |||
Cm b | 1.4 ± 0.2 b | |||
Su | F. spiralis | 2.0 ± 0.9 a | ||
Au | 2.1 ± 0.1 a | 5.23 ± 0.03; 1.87 | Au/Wi 2013, [2]; Au/Wi 2007, [30] | |
Cm a | F. vesiculosus | 2.9 ± 0.1 | ||
Sp | Gracilaria spp. | 2.0 ± 0.1 a | 0.60 ± 0.01 | Sp/Su 2012, [31] |
Au | 0.80 ± 0.07 b | 1.12 | Au/Wi 2012, [32] | |
Sp | L. ochroleuca | 2.2 ± 0.2 | 0.92 ± 0.01 | Sp/Su 2001, [33] |
Cm a | Laminaria spp. | 1.8 ± 0.4 | ||
Su | O. pinnatifida | 1.9 ± 0.1 a | 0.9 ± 0.1 | Sp/Su 2012, [31] |
Wi | 1.7 ± 0.4 a | 7.53± 0.07; 2.58 | Au/Wi 2013, [2]; Au/Wi 2007, [30] | |
Su | Porphyra spp. | 2.3 ± 0.4 a | 1.03 ± 0.04 | Sp/Su 2001, [33] |
Au | 1.3 ± 0.7 b | 3.34 | Au/Wi 2007, [30] | |
Cm b | 1.8 ± 0.3 ab | |||
Su | S. polyschides | 2.5 ± 0.6 a | 1.1 ± 0.1 | Sp/Su 2012, [31] |
Au | 1.0 ± 0.1 b | |||
Su | Ulva spp. | 2.0 ± 0.2 b | 2.62 ± 0.04 | U. armoricana, Sp/Su 2012, [34] |
Au | 1.2 ± 0.1 c | 3.14 ± 0.0 | Au/Wi 2010, [35] | |
Cm b | 3.8 ± 0.1 a | |||
Su | U. pinnatifida | 2.1 ± 0.4 ab | 1.05 ± 0.01 | Sp/Su 2012, [31] |
Wi | 0.83 ± 0.06 b | 5.1 | Au/Wi 2011, [36] | |
Cm a | 2.2 ± 0.4 a |
Seaweed | F. spiralis | Porphyra spp. | Ulva spp. | |||
---|---|---|---|---|---|---|
Harvest Date | Summer | Autumn | Summer | Winter | Spring | Summer |
PAH | Mean ± SD µg/kg DW (Mean ± SD µg/kg FW) | |||||
Ace | n.d. | n.d. | n.d. | n.d. | n.d. | 1.9 ± 0.1 (0.17 ± 0.01) |
Phe | n.d. | n.d. | n.d. | n.d. | 0.52 ± 0.03 (0.0311 ± 0.0002) | n.d. |
Fln | 0.71 ± 0.02 (0.19 ± 0.01) | n.d. | n.d. | 0.47 ± 0.02 (0.027 ± 0.001) | n.d. | n.d. |
Pyr | 0.51 ± 0.02 (0.14 ± 0.01) | 0.33 ± 0.01 (0.076 ± 0.003) | 2.9 ± 0.1 (0.54 ± 0.01) | n.d. | n.d. | n.d. |
B(a)A | n.d. | n.d. | 0.61 ± 0.05 (0.11 ± 0.01) | n.d. | n.d. | n.d. |
∑ PAHs | 1.2 ± 0.1 (0.33 ± 0.01) | 0.33 ± 0.01 (0.076 ± 0.003) | 3.6 ± 0.1 (0.65 ± 0.02) | 0.47 ± 0.02 (0.027 ± 0.001) | 0.52 ± 0.03 (0.031 ± 0.002) | 1.9 ± 0.1 (0.17 ± 0.01) |
Seaweed | A. nodosum | C. crispus | F. vesiculosus | Porphyra spp. | Ulva spp. | U. pinnatifida |
---|---|---|---|---|---|---|
Cultivation | Wild | Wild | Wild | Aquaculture | Aquaculture | Wild |
PAH | Mean ± SD µg/kg DW (Mean ± SD µg/kg FW) | |||||
Naph | 1.6 ± 0.5 (0.50 ± 0.14) | n.d. | n.d. | n.d. | n.d. | n.d. |
Flu | n.d. | n.d. | n.d. | n.d. | n.d. | 0.29 ± 0.02 (0.044 ± 0.003) |
Phe | 1.4 ± 0.1 (0.43 ± 0.03) | 0.61 ± 0.01 (0.11 ± 0.01) | 1.1 ± 0.1 (0.19 ± 0.01) | n.d. | n.d. | 3.3 ± 0.1 (0.50 ± 0.06) |
Fln | n.d. | n.d. | n.d. | 0.43 ± 0.10 (0.065 ± 0.007) | n.d. | 1.5 ± 0.1 (0.23 ± 0.03) |
Pyr | n.d. | n.d. | n.d. | n.d. | n.d. | 1.6 ± 0.2 (0.25 ± 0.03) |
B(b)Ft+B(j)Ft | n.d. | n.d. | n.d. | n.d. | 1.4 ± 0.1 (0.14 ± 0.01) | n.d. |
∑PAHs | 3.1 ± 0.6 (0.93 ± 0.18) | 0.61 ± 0.01 (0.11 ± 0.01) | 1.1 ± 0.1 (0.19 ± 0.01) | 0.43 ± 0.10 (0.065 ± 0.007) | 1.4 ± 0.1 (0.14 ± 0.01) | 6.8 ± 0.1 (1.0 ± 0.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, C.; Sousa, S.; Machado, S.; Vieira, E.; Carvalho, A.P.; Ramalhosa, M.J.; Morais, S.; Correia, M.; Oliva-Teles, T.; Domingues, V.F.; et al. Bioactive Lipids of Seaweeds from the Portuguese North Coast: Health Benefits versus Potential Contamination. Foods 2021, 10, 1366. https://doi.org/10.3390/foods10061366
Soares C, Sousa S, Machado S, Vieira E, Carvalho AP, Ramalhosa MJ, Morais S, Correia M, Oliva-Teles T, Domingues VF, et al. Bioactive Lipids of Seaweeds from the Portuguese North Coast: Health Benefits versus Potential Contamination. Foods. 2021; 10(6):1366. https://doi.org/10.3390/foods10061366
Chicago/Turabian StyleSoares, Cristina, Sara Sousa, Susana Machado, Elsa Vieira, Ana P. Carvalho, Maria João Ramalhosa, Simone Morais, Manuela Correia, Teresa Oliva-Teles, Valentina F. Domingues, and et al. 2021. "Bioactive Lipids of Seaweeds from the Portuguese North Coast: Health Benefits versus Potential Contamination" Foods 10, no. 6: 1366. https://doi.org/10.3390/foods10061366
APA StyleSoares, C., Sousa, S., Machado, S., Vieira, E., Carvalho, A. P., Ramalhosa, M. J., Morais, S., Correia, M., Oliva-Teles, T., Domingues, V. F., & Delerue-Matos, C. (2021). Bioactive Lipids of Seaweeds from the Portuguese North Coast: Health Benefits versus Potential Contamination. Foods, 10(6), 1366. https://doi.org/10.3390/foods10061366