Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species (Hylocereus polyrhizus and Hylocereus undatus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials Collection and Preparation
2.3. Different Extraction Methods
2.3.1. Free Phenolics by Methanol
2.3.2. Bound Phenolics by Acid Hydrolysis
2.3.3. Bound Phenolics by Base Hydrolysis
2.3.4. Bound Phenolics by Composite Enzymes Hydrolysis
2.4. Analyses of Total Phenolic and Total Flavonoid Contents
2.5. UPLC-TOF-MS Analysis
2.6. Antioxidant Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Free and Bound Polyphenols Extracted by Different Methods
3.2. Identification of Phenolic Compositions in RP and WP
3.3. Quantity of Predominant Individual Phenolic Compounds in Various Extracts
3.4. Antioxidant Activity of Phenolics in RP and WP
3.5. Correlation between Phenolic Compounds and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ortiz-Hernandez, D.Y.; Carrillo-Salazar, A.J. Pitahaya (Hylocereus spp.): A short review. Comun. Sci. 2012, 3, 220–237. [Google Scholar]
- Le Bellec, F.; Vaillant, F.; Imbert, E. Pitahaya (Hylocereus spp.): A new fruit crop, a market with a future. Fruits 2006, 61, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Ferreres, F.; Grosso, C.; Gil-Izquierdo, A.; Valentao, P.; Mota, A.T.; Andrade, P.B. Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chem. 2017, 230, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, J.; Saura-Calixto, F. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Res. Int. 2018, 111, 148–152. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Gomez-Mejia, E.; Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Madrid, Y. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chem. 2019, 295, 289–299. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Gedas, A.; Simoes, M. Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Res. Int. 2020, 134, 109214. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Estrada, B.A.; Gutierrez-Uribe, J.A.; Serna-Saldivar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, B.; Li, X.; Chen, P.X.; Zhang, H.; Liu, R.; Tsao, R. Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and alpha-glucosidase and pancreatic lipase inhibitory effects. J. Agric. Food Chem. 2016, 64, 1712–1719. [Google Scholar] [CrossRef]
- Rita, R.K.B.; Dhankar, J.; Nalla, D.B. Assessment of strawberry polyphenols aqueous extract for major compositional and biofunctional attributes. Int. J. Curr. Res. Rev. 2018, 10, 1–6. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, J.; Li, C.; Liu, S.; Wang, L. Morinda citrifolia L. leaves extracts obtained by traditional and eco-friendly extraction solvents: Relation between phenolic compositions and biological properties by multivariate analysis. Ind. Crop. Prod. 2020, 153, 112586. [Google Scholar] [CrossRef]
- Wang, L.; Lin, X.; Zhang, J.; Zhang, W.; Hu, X.; Li, W.; Li, C.; Liu, S. Extraction methods for the releasing of bound phenolics from Rubus idaeus L. leaves and seeds. Ind. Crop. Prod. 2019, 135, 1–9. [Google Scholar] [CrossRef]
- Reitzer, F.; Allais, M.; Ball, V.; Meyer, F. Polyphenols at interfaces. Adv. Colloid Interface Sci. 2018, 257, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.K.; Zhang, X.; Chen, G.L.; Yu, J.; Yang, L.Q.; Gao, Y.Q. Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J. Funct. Foods 2016, 24, 359–372. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Wang, Y.; Liu, Z.; Ni, Y. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll. 2021, 110, 106162. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.K.; Moon, J.Y.; Kim, Y.S.; Mosaddik, A.; Cho, S.K. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J. Food Sci. 2011, 76, 38–45. [Google Scholar] [CrossRef]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods. 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Wu, L.C.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Garcia-Cruz, L.; Duenas, M.; Santos-Buelgas, C.; Valle-Guadarrama, S.; Salinas-Moreno, Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chem. 2017, 234, 111–118. [Google Scholar] [CrossRef]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Ind. Crop. Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Singh, N.; Nim, L.; Shevkani, K.; Kaur, H.; Arora, D.S. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT Food Sci. Technol. 2016, 65, 1025–1030. [Google Scholar] [CrossRef]
- Pascoa, R.; Teixeira, A.M.; Sousa, C. Antioxidant capacity of Camellia japonica cultivars assessed by near- and mid-infrared spectroscopy. Planta 2019, 249, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Arnab, A.; Goyal, A.; Middha, S. Evaluation of the DPPH radical scavenging activity, total phenols and antioxidant activities in Indian wild Bambusa vulgaris “Vittata” methanolic leaf extract. J. Nat. Pharm. 2010, 1, 40–45. [Google Scholar] [CrossRef]
- Van der Werf, R.; Marcic, C.; Khalil, A.; Sigrist, S.; Marchioni, E. ABTS radical scavenging capacity in green and roasted coffee extracts. LWT Food Sci. Technol. 2014, 58, 77–85. [Google Scholar] [CrossRef]
- Chen, T.S.; Liou, S.Y.; Wu, H.C.; Tsai, F.J.; Tsai, C.H.; Huang, C.Y.; Chang, Y.L. New analytical method for investigating the antioxidant power of food extracts on the basis of their electron-donating ability: Comparison to the ferric reducing/antioxidant power (FRAP) assay. J. Agric. Food Chem. 2010, 58, 8477–8480. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J.D. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Kim, K.; Tsao, R.; Yang, R.; Cui, S. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chem. 2009, 116, 947–954. [Google Scholar] [CrossRef]
- Montiel-Sanchez, M.; Garcia-Cayuela, T.; Gomez-Maqueo, A.; Garcia, H.S.; Cano, M.P. In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chem. 2020, 342, 128087. [Google Scholar] [CrossRef]
- Zulkifli, S.A.; Abd Gani, S.S.; Zaidan, U.H.; Halmi, M.I.E. Optimization of total phenolic and flavonoid contents of defatted pitaya (Hylocereus polyrhizus) seed extract and its antioxidant properties. Molecules 2020, 25, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chem. 2014, 165, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Sallam, I.E.; Fekry, M.I.; Zaghloul, S.S.; El-Dine, R.S. Metabolite profiling of three Opuntia ficus-indica fruit cultivars using UPLC-QTOF-MS in relation to their antioxidant potential. Food Biosci. 2020, 36, 100673. [Google Scholar] [CrossRef]
- Wang, L.; Bei, Q.; Wu, Y.; Liao, W.; Wu, Z. Characterization of soluble and insoluble-bound polyphenols from Psidium guajava L. leaves co-fermented with Monascus anka and Bacillus sp. and their bio-activities. J. Funct. Foods 2017, 32, 149–159. [Google Scholar] [CrossRef]
- Raudone, L.; Vilkickyte, G.; Pitkauskaite, L.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V. Antioxidant activities of Vaccinium vitis-idaea L. leaves within cultivars and their phenolic compounds. Molecules 2019, 24, 844. [Google Scholar] [CrossRef] [Green Version]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef]
- Sumczynski, D.; Kotásková, E.; Orsavová, J.; Valášek, P. Contribution of individual phenolics to antioxidant activity and in vitro digestibility of wild rices (Zizania aquatica L.). Food Chem. 2017, 218, 107–115. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds | Calibration Curves | Correlation Coefficients (r2) | Linear Ranges (ng/mL) | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) |
---|---|---|---|---|---|---|
astragalin | Y = −4,803,060 + 287,294X | 1.0000 | 21.560–5000.342 | 5.917 | 19.723 | 98.97–101.79 |
syringic acid | Y = −5,794,220 + 81,951.2X | 0.9992 | 74.706–5019.928 | 20.742 | 69.141 | 96.74–99.92 |
gallic acid | Y = −10,582,100 + 321,771X | 0.9997 | 198.933–5009.727 | 49.897 | 166.323 | 96.57–100.42 |
chlorogenic acid | Y = −3,822,170 + 74,204.2X | 0.9991 | 52.036–5022.678 | 9.427 | 31.423 | 97.14–99.97 |
cryptochlorogenic acid | Y = −4,693,760 + 116,490X | 0.9996 | 40.436–5007.027 | 5.864 | 19.547 | 98.61–102.67 |
kaempferol | Y = −24,043,800 + 519,101X | 0.9996 | 90.191–5012.449 | 21.218 | 70.727 | 101.21–103.09 |
caffeic acid | Y = −57,997,300 + 977,935X | 1.0000 | 161.473–4998.604 | 39.659 | 132.196 | 99.57–101.09 |
ferulic acid | Y = −28,597,200 + 367,571X | 0.9999 | 85.506–5004.645 | 20.276 | 67.587 | 102.31–103.97 |
epicatechin | Y = −2,607,660 + 417,721X | 0.9999 | 10.692–4992.796 | 2.969 | 9.897 | 99.83–101.96 |
p-coumaric acid | Y = −68,269,600 + 786,892X | 0.9998 | 87.599–5000.646 | 24.259 | 80.863 | 97.13–99.93 |
rutin | Y = −4,547,420 + 167,759X | 0.9998 | 27.313–5011.457 | 5.987 | 19.959 | 97.97–103.15 |
isoquercitrin | Y = −5,259,570 + 244,998X | 0.9999 | 21.642–5003.646 | 5.362 | 17.873 | 99.48–100.37 |
quercitrin | Y = −3,409,400 + 325,845X | 0.9997 | 62.223–5009.821 | 12.518 | 41.727 | 98.31–101.37 |
nicotiflorin | Y = −2,387,800 + 190,613X | 1.0000 | 12.898–5003.779 | 3.337 | 11.123 | 99.35–100.01 |
4-methoxysalicylic acid | Y = −632,177 + 55,830X | 0.9997 | 32.875–3979.501 | 5.810 | 19.367 | 94.81–97.56 |
sinapic acid | Y = 5,735,810 + 107,181X | 0.9995 | 30.237–5991.023 | 6.095 | 20.317 | 94.87–99.37 |
p-hydroxycinnamic acid | Y = 2,185,610 + 80,817.5X | 0.9997 | 27.690–5095.187 | 6.397 | 21.323 | 96.64–102.32 |
1,3-dicaffeoylquinic acid | Y = −5,672,173 + 57,810X | 0.9951 | 32.902–3979.102 | 6.356 | 21.187 | 97.31–101.59 |
isoferulic acid | Y = −1,535,870 + 173,911X | 1.0000 | 56.769–4908.780 | 11.839 | 39.463 | 98.86–101.16 |
gentiopicrin | Y = −1,104,055 + 179,871.4X | 0.9997 | 50.810–3993.299 | 12.119 | 40.397 | 99.17–100.31 |
grosvenorine | Y = −1,001,090 + 245,481.9X | 1.0000 | 52.007–5001.712 | 11.852 | 39.507 | 95.31–102.16 |
diosmin | Y = −3,091,250 + 315,432.9X | 0.9997 | 73.502–5019.121 | 9.737 | 32.457 | 96.17~99.01 |
isorhamnetin | Y = −7,171,780 + 227,089X | 0.9995 | 57.201–3911.709 | 15.011 | 50.037 | 98.97–100.67 |
baicalein | Y = −3,381,572 + 285,915X | 0.9997 | 23.712–5095.538 | 6.095 | 20.317 | 97.17–102.17 |
No. | RT (min) | Compounds | Formula | m/z [M−H] | m/z Fragments | Phenolics Fractions |
---|---|---|---|---|---|---|
Hydroxybenzoic acids and derivatives | ||||||
1 | 4.73 | gallic acid a,b | C7H6O5 | 169.00 | 125.05, 78.95 | F1, F2, A1, A2, B1, B2, E1 |
2 | 5.29 | 4-methoxysalicylic acid a,b | C8H8O4 | 167.03 | 123.04 | E2 |
4 | 7.31 | syringic acid a,b | C9H10O5 | 197.04 | 153.05 | F1, F2, A1, A2 |
12 | 8.67 | methyl vanillate b | C9H10O4 | 181.05 | 166.03 | F2 |
21 | 10.97 | sinapic acid a,b | C11H12O5 | 223.06 | 193.01, 149.02 | B1 |
Hydroxycinnamic acids and derivatives | ||||||
3 | 7.30 | chlorogenic acid a,b | C16H18O9 | 353.09 | 161.02, 191.06 | F1, F2, A1, A2, B1, B2, E1, E2 |
6 | 7.33 | cryptochlorogenic acid a,b | C16H18O9 | 353.09 | 173.05, 191.06 | A1, A2, B1, B2, E2 |
7 | 7.35 | p-hydroxycinnamic acid a,b | C9H8O3 | 163.04 | 119.05 | F1 |
9 | 8.15 | esculetin b | C9H6O4 | 177.02 | 149.02 | B1 |
11 | 8.34 | caffeic acid a,b | C9H8O4 | 179.03 | 135.04, 107.05 | F1, F2, A1, A2, B1, B2, E1, E2 |
13 | 8.88 | 7,8-dihydroxycoumarin b | C9H6O4 | 177.02 | 149.02 | F1, B1 |
18 | 10.28 | ρ-coumaric acid a,b | C9H8O3 | 163.04 | 119.05 | F1, F2, A1, A2, B1, B2, E1, E2 |
22 | 11.06 | ferulic acid a,b | C10H10O4 | 192.05 | 134.04, 178.03 | F1, F2, A1, A2, B1, B2, E1, E2 |
27 | 12.65 | 1,3-dicaffeoylquinic acid a,b | C25H24O12 | 515.12 | 353.09, 191.06 | F2 |
28 | 13.74 | isoferulic acid a,b | C10H10O4 | 193.05 | 134.04, 178.03 | B1, B2, E1, E2 |
32 | 16.48 | methyl 4-hydroxycinnamate b | C10H10O3 | 177.06 | 145.03 | F1, F2, A2, E1, E2 |
Flavonoids | ||||||
8 | 7.96 | gentiopicrin a,b | C16H20O9 | 355.10 | 149.06 | F1 |
10 | 8.15 | androsin b | C15H20O8 | 327.11 | 165.05 | F2 |
14 | 9.37 | Epicatechin a,b | C15H14O6 | 289.10 | 244.90, 108.90 | F1, F2 |
15 | 9.73 | grosvenorine a,b | C33H40O19 | 739.21 | 285.04 | F1 |
16 | 9.78 | rutin a,b | C27H30O16 | 609.15 | 300.03 | F1, F2, A1, A2, B1, B2, E1, E2 |
17 | 9.83 | typhaneoside b | C34H42O20 | 769.22 | 314.04, 151.00 | F1, F2, B1, B2, E2 |
19 | 10.64 | lonicerin b | C27H30O15 | 593.15 | 447.09, 285.04 | F1, F2 |
20 | 10.95 | isoquercetin a,b | C21H20O12 | 463.09 | 300.03, 271.03 | F1, F2, A1, A2, B1, B2, E1, E2 |
23 | 11.49 | nicotiflorin a,b | C27H30O15 | 593.15 | 285.04 | F1, F2, A1, A2, B1, B2, E1, E2 |
24 | 11.50 | kaempferol 3-glucorhamnoside b | C27H30O15 | 593.15 | 284.03, 327.05 | E2 |
25 | 11.72 | isorhamnetin-3-O-neohesperidine b | C28H32O16 | 623.16 | 314.04, 271.02 | F1, F2, B1, B2, E1, E2 |
26 | 12.12 | astragalin a,b | C21H20O11 | 447.09 | 284.03, 227.03 | F1, F2, B2, E1, E2 |
29 | 13.97 | Diosmin a,b | C28H32O15 | 607.17 | 299.06 | F2 |
31 | 15.95 | quercetin a,b | C15H10O7 | 301.04 | 151,179 | F1, F2, A1, A2, B1, E1, E2 |
33 | 16.58 | calycosin b | C16H12O5 | 283.06 | 268.04 | F1 |
34 | 17.55 | kaempferol a,b | C15H10O6 | 285.04 | 151.00 | F1, F2, A1, A2, B1, B2, E1, E2 |
35 | 17.76 | isorhamnetinab | C16H12O7 | 315.05 | 300.03, 151.00 | F2, A1, A2, E1, E2 |
36 | 17.93 | baicalein a,b | C15H10O5 | 269.05 | 251.03 | F2 |
37 | 18.12 | tectorigenin b | C16H12O6 | 299.06 | 284.03 | F2, A1 |
Others | ||||||
5 | 7.32 | quinic acid b | C7H12O6 | 191.06 | 127.04 | F2 |
30 | 15.12 | abscisic acid b | C15H20O4 | 263.13 | 163.08, 219.14 | B1 |
Class | Sub-Class | Analytes | Contents (mg/kg DW) | |||
---|---|---|---|---|---|---|
Red-pulp pitahaya peel | ||||||
F1 | A1 (%) | B1 (%) | E1 (%) | |||
Phenolic acids | Hydroxybenzoic acids | gallic acid | 1.45 ± 0.02 | 1.50 ± 0.76 (50.85) | 1.42 ± 0.72 (49.48) | 0.95 ± 0.51 (39.58) |
4-methoxysalicylic acid | 0.53 ± 0.01 | 0.35 ± 0.00 (39.77) | 0.55 ± 0.01 (50.93) | 0.23 ± 0.01 (30.26) | ||
syringic acid | 2.43 ± 0.13 | 1.77 ± 0.04 (42.14) | ND | ND | ||
sinapic acid | 1.15 ± 0.01 | 1.05 ± 0.31 (47.73) | 1.25 ± 0.72 (52.08) | 0.35 ± 0.51 (23.33) | ||
Hydroxycinnamic acids | chlorogenic acid | 17.75 ± 1.09 | 1.54 ± 0.06 (7.98) | 1.70 ± 0.95 (8.74) | 1.39 ± 0.05 (7.26) | |
cryptochlorogenic acid | ND | 0.87 ± 0.00 (100.00) | 0.85 ± 0.03 (100.00) | ND | ||
p-hydroxycinnamic acid | 1.25 ± 0.05 | 0.85 ± 0.01 (40.48) | 1.45 ± 0.07 (53.70) | 0.37 ± 0.02 (14.12) | ||
caffeic acid | 2.85 ± 0.25 | 2.59 ± 0.62 (47.61) | 54.18 ± 3.06 (95.00) | 3.40 ± 0.41 (54.40) | ||
p-coumaric acid | 4.96 ± 0.25 | 3.66 ± 0.21 (42.46) | 11.33 ± 0.90 (69.55) | 5.56 ± 0.39 (52.85) | ||
ferulic acid | 6.68 ± 1.27 | 9.88 ± 1.88 (59.66) | 18.36 ± 3.37 (73.32) | 4.04 ± 0.73 (37.69) | ||
1,3-dicaffeoylquinic acid | 1.58 ± 0.13 | 1.57 ± 0.12 (49.84) | 1.65 ± 0.07 (51.08) | 0.59 ± 0.01 (27.19) | ||
isoferulic acid | 1.65 ± 0.03 | 1.00 ± 0.11 (37.74) | 1.55 ± 0.37 (48.44) | ND | ||
Flavonoids | epicatechin | 2.00 ± 0.89 | ND | ND | ND | |
kaempferol | 1.37 ± 0.07 | 1.32 ± 0.12 (49.07) | 1.10 ± 0.21 (44.53) | 0.97 ± 0.01 (41.45) | ||
gentiopicrin | 1.07 ± 0.03 | 1.01 ± 0.10 (48.56) | 0.70 ± 0.01 (39.55) | 0.57 ± 0.02 (34.76) | ||
grosvenorine | 0.17 ± 0.00 | 0.31 ± 0.02 (64.58) | 0.19 ± 0.02 (52.78) | 0.17 ± 0.01 (50) | ||
diosmin | 1.05 ± 0.05 | 0.59 ± 0.01 (35.98) | 0.78 ± 0.01 (42.62) | 0.65 ± 0.03 (38.24) | ||
isorhamnetin | 1.09 ± 0.05 | ND | 0.92 ± 0.03 (45.77) | ND | ||
baicalein | 0.57 ± 0.02 | 0.32 ± 0.03 (35.96) | 0.51 ± 0.03 (47.22) | 0.37 ± 0.02 (39.36) | ||
astragalin | 1.19 ± 0.06 | ND | 0.42 ± 0.01 (26.09) | 0.45 ± 0.03 (27.44) | ||
nicotiflorin | 4.18 ± 0.19 | 0.25 ± 0.00 (5.64) | 1.15 ± 0.11 (21.58) | 0.64 ± 0.11 (13.28) | ||
quercetin | 7.18 ± 0.12 | 0.32 ± 0.07(4.27) | 0.55 ± 0.02 (7.12) | 0.61 ± 0.02 (7.83) | ||
rutin | 1.76 ± 0.00 | 0.54 ± 0.00(23.48) | 1.48 ± 0.11 (45.68) | 0.61 ± 0.04 (25.74) | ||
isoquercitrin | 3.04 ± 0.14 | 0.43 ± 0.00(12.39) | 2.73 ± 0.30 (47.31) | 0.60 ± 0.04 (16.48) | ||
White-pulp pitahaya peel | ||||||
F2 | A2 (%) | B2 (%) | E2 (%) | |||
Phenolic acids | Hydroxybenzoic acids | gallic acid | 1.29 ± 0.09 | 2.10 ± 2.06 (61.95) | 0.74 ± 0.07 (36.45) | ND |
4-methoxysalicylic acid | 0.43 ± 0.00 | 0.15 ± 0.00 (25.86) | 0.53 ± 0.011 (55.21) | 0.13 ± 0.01 (23.21) | ||
syringic acid | 1.99 ± 0.01 | 1.69 ± 0.08 (45.92) | ND | ND | ||
sinapic acid | 1.05 ± 0.02 | 1.01 ± 0.21 (49.03) | 1.75 ± 0.32 (62.50) | 0.05 ± 0.00 (4.55) | ||
Hydroxycinnamic acids | chlorogenic acid | 131.67 ± 13.50 | 1.88 ± 0.10 (1.41) | 1.04 ± 0.00 (0.78) | 2.21 ± 0.19 (1.65) | |
cryptochlorogenic acid | ND | 0.95 ± 0.15 (100.00) | 0.81 ± 0.00 (100.00) | 1.06 ± 0.37 (100.00) | ||
p-hydroxycinnamic acid | 1.02 ± 0.05 | 0.75 ± 0.01 (42.37) | 1.35 ± 0.05 (56.96) | ND | ||
p-coumaric acid | 3.48 ± 0.21 | 2.34 ± 0.12 (40.21) | 6.63 ± 1.92 (65.58) | 3.09 ± 0.21 (47.03) | ||
caffeic acid | 7.73 ± 1.39 | 5.23 ± 1.34 (40.35) | 25.43 ± 9.01 (76.69) | 5.35 ± 0.71 (40.90) | ||
ferulic acid | 5.27 ± 1.13 | 5.99 ± 0.92 (53.20) | 16.25 ± 1.77 (75.51) | 2.64 ± 0.27 (33.38) | ||
1,3-dicaffeoylquinic acid | 1.08 ± 0.03 | 1.17 ± 0.10 (52.00) | 1.55 ± 0.05 (58.94) | 0.30 ± 0.00 (21.74) | ||
isoferulic acid | 1.15 ± 0.02 | 1.01 ± 0.10 (46.76) | 1.35 ± 0.30 (54.00) | 0.05 ± 0.00 (4.17) | ||
Flavonoids | epicatechin | 1.84 ± 0.68 | ND | ND | ND | |
kaempferol | 1.00 ± 0.03 | 1.49 ± 0.18 (59.84) | 1.49 ± 0.18 (59.84) | 0.94 ± 0.00 (48.45) | ||
gentiopicrin | 1.01 ± 0.02 | 0.91 ± 0.03 (47.40) | 1.70 ± 0.11 (62.73) | 0.37 ± 0.01 (26.81) | ||
grosvenorine | 0.15 ± 0.00 | 0.11 ± 0.00 (42.31) | 0.17 ± 0.01 (53.13) | ND | ||
diosmin | 1.00 ± 0.05 | 0.39 ± 0.01 (28.06) | 1.58 ± 0.05 (61.24) | 0.15 ± 0.01 (13.04) | ||
isorhamnetin | 1.09 ± 0.09 | ND | 0.52 ± 0.03 (32.30) | ND | ||
baicalein | 0.37 ± 0.01 | 0.22 ± 0.01 (37.29) | 0.39 ± 0.05 (51.32) | 0.30 ± 0.00 (44.77) | ||
astragalin | 0.63 ± 0.04 | ND | ND | 0.38 ± 0.01 (37.63) | ||
nicotiflorin | 2.58 ± 0.11 | 0.25 ± 0.00 (8.83) | 0.39 ± 0.06 (13.13) | 0.54 ± 0.05 (17.31) | ||
quercetin | 2.26 ± 0.53 | 1.34 ± 0.24 (37.22) | ND | 0.30 ± 0.02 (11.72) | ||
rutin | 11.03 ± 0.50 | 0.55 ± 0.00 (4.75) | 0.79 ± 0.11 (6.35) | 0.90 ± 0.04 (7.54) | ||
isoquercitrin | 10.30 ± 1.01 | 0.43 ± 0.00 (4.01) | 0.98 ± 0.30 (8.69) | 0.86 ± 0.06 (7.71) |
Stage | Extraction | Red-Pulp Pitahaya Peel | White-Pulp Pitahaya Peel |
---|---|---|---|
ABTS+ radical scavenging activity (μmol TE/g DW) | Methanol | 13.03 ± 0.09 Ba | 13.43 ± 0.03 Ba |
Acid | 4.56 ± 0.27 Aa | 5.03 ± 0.11 Aa | |
Base | 33.62 ± 2.16 Ca | 38.42 ± 1.42 Cb | |
Composite enzymes | 4.24 ± 0.33 Aa | 4.15 ± 0.18 Aa | |
DPPH radical scavenging activity (μmol TE/g DW) | Methanol | 6.82 ± 0.02 Ba | 7.01 ± 0.20 Ba |
Acid | 2.02 ± 0.20 Aa | 1.84 ± 0.16 Aa | |
Base | 31.34 ± 3.72 Cb | 25.19 ± 2.01 Ca | |
Composite enzymes | 1.28 ± 0.14 Aa | 1.08 ± 0.15 Aa | |
Ferric reducing/antioxidant power (μmol Fe(II)SE /g DW) | Methanol | 102.69 ± 3.27 Ca | 107.99 ± 1.72 Ca |
Acid | 4.23 ± 0.39 Aa | 5.62 ± 0.63 Aa | |
Base | 237.25 ± 3.57 Da | 254.2 ± 5.07 Db | |
Composite enzymes | 13.68 ± 0.47 Ba | 12.38 ± 0.32 Ba |
DPPH | ABTS | FRAP | |
---|---|---|---|
TPC (RP) | 0.717 ** | 0.803 ** | 0.872 ** |
TPC (WP) | 0.764 ** | 0.784 ** | 0.871 ** |
TFC (RP) | 0.110 | 0.237 | 0.353 |
TFC (WP) | 0.367 | 0.435 | 0.566 |
Caffeic acid (RP) | 0.979 ** | 0.947 ** | 0.908 ** |
Caffeic acid (WP) | 0.904 ** | 0.883 ** | 0.863 ** |
Ferulic acid (RP) | 0.836 ** | 0.857 ** | 0.785 ** |
Ferulic acid (WP) | 0.497 | 0.548 | 0.51 |
Chlorogenic acid (RP) | −0.154 | −0.023 | 0.094 |
Chlorogenic acid (WP) | −0.111 | −0.083 | 0.067 |
Syringic acid (RP) | 0.968 ** | 0.966 ** | 0.960 ** |
Syringic acid (WP) | 0.968 * | 0.964 * | 0.971 * |
Nicotiflorin (RP) | −0.029 | 0.090 | 0.214 |
Nicotiflorin (WP) | −0.176 | −0.151 | 0.002 |
Rutin (RP) | 0.758 * | 0.791 * | 0.851 * |
Rutin (WP) | −0.117 | −0.143 | 0.033 |
p-coumaric acid (RP) | 0.947 ** | 0.929 ** | 0.904 ** |
p-coumaric acid (WP) | 0.874 ** | 0.862 ** | 0.859 ** |
Quercetin (RP) | −0.154 | −0.028 | 0.095 |
Quercetin (WP) | 0.016 | 0.065 | 0.203 |
Isoquercitrin (RP) | 0.635 * | 0.716 ** | 0.804 ** |
Isoquercitrin (WP) | −0.073 | −0.045 | 0.107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Li, W.; Yang, Y.; Lin, X.; Wang, L.; Li, C.; Yang, R. Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species (Hylocereus polyrhizus and Hylocereus undatus). Foods 2021, 10, 1183. https://doi.org/10.3390/foods10061183
Tang W, Li W, Yang Y, Lin X, Wang L, Li C, Yang R. Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species (Hylocereus polyrhizus and Hylocereus undatus). Foods. 2021; 10(6):1183. https://doi.org/10.3390/foods10061183
Chicago/Turabian StyleTang, Wanpei, Wu Li, Yuzhe Yang, Xue Lin, Lu Wang, Congfa Li, and Ruili Yang. 2021. "Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species (Hylocereus polyrhizus and Hylocereus undatus)" Foods 10, no. 6: 1183. https://doi.org/10.3390/foods10061183