Multi-Statistical Approach for the Study of Volatile Compounds of Industrial Spoiled Manzanilla Spanish-Style Table Olive Fermentations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olives and Sampling
2.2. Physic-Chemical Analysis
2.3. VOC Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physic-Chemical and Organoleptic Analysis
3.2. Concentration of VOCs in Brine
3.3. Relating Samples to VOCs by Univariate Analysis of Variance (ANOVA)
3.3.1. Identification of VOCs Associated with a Single Spoilage
3.3.2. VOCs Common to Several Spoilages/Normal Fermentation
3.4. Sample Segregation by VOCs
3.5. Relating Samples to VOCs by CoDa Exploratory Analysis
3.5.1. Variation Array and Biplot
3.5.2. Relating Samples and VOCs by Clustering
3.6. Association of Most Influential VOCs to Spoilage
3.7. Identification of Putative VOC Markers
3.7.1. Butyric vs Normal Samples from Industry A
3.7.2. Sulfidic vs Normal Samples from Industry B
3.7.3. Putrid vs Normal Fermentation Samples from Industry B
3.8. Relationship of Relevant VOCs and Spoilage by Heatmap
3.9. Overall Summary of the Association of VOCs with Spoilages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Garrido-Fernandez, A.; Díez, M.J.F.; Adams, R.M. Table Olives: Production and Processing; Chapman & Hall: London, UK, 1997. [Google Scholar]
- CODEX STAN 66-1981. Standard for Table Olives; Revision 2013; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Sabatine, N.; Marsilio, V. Volatile compounds in table olives (Olea europaea, L., Nocellara del Belice cultivar). Food Chem. 2008, 107, 1522–1528. [Google Scholar] [CrossRef]
- Sánchez, A.H.; de Castro, A.; López-López, A.; Beato, V.M.; Montaño, A. Volatile profile of Spanish-style green table olives prepared from different cultivars grown at different locations. Food Res. Int. 2016, 83, 131–142. [Google Scholar] [CrossRef] [Green Version]
- De Castro, A.; Sánchez, A.H.; Cortés-Delgado, A.; López-López, A.; Montaño, A. Effect of Spanish-style processing steps and inoculation with Lactobacillus pentosus starter culture on the volatile composition of cv. Manzanilla green olives. Food Chem. 2019, 271, 543–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benítez-Cabello, A.; Rodríguez-Gómez, F.; Morales, L.; Garrido-Fernández, A.; Jiménez-Díaz, R.; López, F.N.A. Lactic acid bacteria and yeast inoculant modulate the volatile profile of Spanish-style green table olive fermentation. Foods 2019, 8, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaño, A.; de Castro, A.; Rejano, L.; Sánchez, A.H. Analysis of zapatera olives by gas and high-performance liquid chromatography. J. Chromat. 1992, 594, 259–267. [Google Scholar] [CrossRef]
- De Castro, A.; Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Medina, E.; Montaño, A. Microbiota and metabolite profiling of spoiled Spanish-style green table olives. Metabolites 2018, 8, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacon-Shone, J. A short history of compositional data analysis. In Compositional Data Analysis. Theory and Applications; Pawlowsky-Gllahn, V., Buccianti, A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2011; pp. 1–11. [Google Scholar]
- Filzmoser, P.; Hron, K.; Templ, M. Applied Compositional Data Analysis, with Worked Examples; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman & Hall Ltd.: Atlantic City, NJ, USA, 1986. [Google Scholar]
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana-Delgado, R. Modeling and Analysis of Compositional Data; John Wiley & Sons Ltd.: Chichester, UK, 2015. [Google Scholar]
- Chayes, F. On the correlation between variables of a constant sum. J. Geo. Res. 1960, 65, 4185–4193. [Google Scholar] [CrossRef]
- Van den Boogaart, K.G.; Tolosana-Delgado, R. Analysing Compositional Data with R; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pierotti, M.E.R.; Martín-Fernández, J. Compositional analysis in behavioral and evolutionary ecology. In Compositional Data Analysis: Theory and Practice; Pawlowsky-Glahn, V., Cuccianti, A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2011; pp. 218–234. [Google Scholar]
- Ros-Freixedes, R.; Estany, J. On the compositional analysis of fatty acids in pork. J. Agric. Biol. Environ. Stat. 2014, 19, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Fernández, A.; León Camacho, M. Assessing the effect of season, montanera length, and sampling location on Iberian pig fat by compositional data analysis and standard multivariate statistics. Food Chem. 2019, 295, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Fernández, A.; Montaño, A.; Sánchez-Gómez, A.H.; Cortés-Delgado, A.; López-López, A. Volatile profiles of green Spanish-style table olives: Application of compositional data analysis for the segregation of their cultivars and production areas. Talanta 2017, 169, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido-Fernández, A.; Benítez-Cabello, A.; Rodríguez-Gómez, F.; Jiménez-Díaz, R.; Arroyo-López, F.N.; Morales, L. Relating starter cultures to volatile profile and potential markers in green Spanish-style table olives by compositional data analysis. Food Microbiol. 2021, 94, 103659. [Google Scholar] [CrossRef] [PubMed]
- Comas-Cufí, M.; Thió-Henestrosa, S. CoDaPack 2.0: A stand-alone, multi-platform compositional software. In Proceedings of the CoDaWork’11: 4th International Workshop on Compositional Data Analysis, Sant Feliu de Guíxols, Girona, Spain, 10–13 May 2011. [Google Scholar]
- Greenacre, M. Compositional Data Analysis in Practice; Chapman & Hall/CRC Press: London, UK, 2018. [Google Scholar]
- Walach, J.; Filzmoser, P.; Hron, K.; Walczak, B. Robust biomarker identification based on pairwise log-ratios. Chemon. Intell. Lab. Syst. 2017, 171, 277–285. [Google Scholar] [CrossRef]
- Templ, M.; Hron, K.; Filzmoser, P. robCompositions: An R-package for robust statistical analysis of compositional data. In Compositional Data Analysis: Theory and Application; Pawlowsky-Glahn, V., Buccianti, A., Eds.; John Wiley & Sons Ltd.: London, UK, 2011; pp. 341–354. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 April 2021).
- R Studio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2019; Available online: http://www.rstudio.com/ (accessed on 15 April 2021).
- Aitchison, J.; Greenacre, M. Biplots for compositional data. J. R. Stat. Soc. 2002, 51, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Romero-Gil, V.; Bautista-Gallego, J.; Rodríguez-Gómez, F.; García-García, P.; Jiménez-Díaz, R.; Garrido-Fernández, A.; Arroyo López, F.N. Evaluating the individual effects of temperature, and salt in table olive related microorganisms. Food Microbiol. 2013, 33, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.E.; Vaughn, R.H. Desulfovibrio aestuarii, the causative agent of hydrogen sulfide spoilage of fermenting olive brines. J. Food Sci. 1966, 31, 768–772. [Google Scholar] [CrossRef]
- López-López, A.; Sánchez, A.H.; Cortés-Delgado, A.; de Castro, A.; Montaño, A. Relating sensory análisis with SPME-GC-MS data for Spanish-style green table olive aroma profiling. LWT Food Sci. Technol. 2018, 89, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Camp, N.; Slattery, M.L. Classification tree analysis: A statistical tool to investigate risk factor interactions with an example for colon cancer (United States). Cancer Causes Control 2002, 13, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Giabbanelli, P.J.; Adams, J. Identifying small groups of foods that can predict achievement of the key dietary recommendations: Data mining of the UK National Diet and Nutrition Survey, 2008–2012. Public Health Nut. 2016, 19, 1543–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nodes | CODES (Prediction) | Rules |
---|---|---|
Node 1 | 2 | |
Node 2 | 2 | If clr.2-methyl-2-butenal (V24) ≤−4.42041 then CODES = 2 in 40% cases |
Node 3 | 5 | If clr.2-methyl-2-butenal (V24) −4.42041, −4.01629] then CODES = 5 in 40% cases |
Node 4 | 4 | If clr.2-methyl-2-butenal (V24) >−4.01629 then CODES = 4 in 20% cases |
Node 5 | 1 | If clr.2-methyl-2-butenal (V24) (−4.42041, −4.01629] and clr.acetone (V3) ≤−0.412896 then CODES = 1 in 20% cases |
Node 6 | 5 | If clr.2-methyl-2-butenal (V24) (−4.42041, −4.01629] and clr.acetone (V3) >−0.412896 then CODES = 5 in 20% cases |
From\To | 1 | 2 | 3 | 4 | 5 | Total | % Correct |
---|---|---|---|---|---|---|---|
1 | 4 | 0 | 0 | 0 | 0 | 4 | 100.0 |
2 | 0 | 8 | 0 | 0 | 0 | 8 | 100.0 |
3 | 0 | 0 | 0 | 2 | 0 | 2 | 0.0 |
4 | 0 | 0 | 0 | 2 | 0 | 2 | 100.0 |
5 | 0 | 0 | 0 | 0 | 4 | 4 | 100.0 |
Total | 4 | 8 | 0 | 4 | 4 | 20 | 90.0 |
Log-Ratios | ||||||
---|---|---|---|---|---|---|
V47/V62 | V24/V49 | V40/V88 | V40/V48 | V8/V79 | V11/V72 | |
Sample | 1st step | 2nd Step | 3rd step | 4th step | 5th step | 6th step |
* F508 | 11.5366736 | −3.34584729 | −0.79449967 | −11.5366736 | −5.24925185 | −3.60413823 |
* F562 | 4.31194432 | −5.26685746 | 9.25254389 | −0.39287304 | <10−8 | 2.36124225 |
* F282 | <10−8 | <10−8 | <10−8 | 10.1927924 | 4.28393332 | 11.0951384 |
* F283 | <10−8 | <10−8 | −4.18599046 | 10.3222438 | −4.18599046 | 11.0754892 |
F284 | 8.35119765 | 8.61352368 | −3.35607594 | −8.35119765 | −10.3377366 | 11.0976654 |
F285 | 8.27834396 | 7.27272682 | −0.85347747 | −8.27834396 | −8.97662228 | 11.338771 |
F286 | 8.89742579 | 6.63844165 | −1.35585478 | −8.89742579 | −10.2055787 | 11.0516611 |
F309 | 6.64586886 | 7.28309525 | −1.65695554 | −6.64586886 | −9.85671251 | 11.3299799 |
F502 | 8.36178107 | 2.52536384 | −3.21526325 | −0.00764613 | −10.8405329 | 2.59544661 |
F592 | 5.45442103 | −7.2474397 | 9.22333371 | 0.09096199 | <10−8 | 1.99738057 |
Cummulative variance (%) | 69.35 | 82.9 | 90.35 | 93.86 | 96.32 | 97.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Fernández, A.; Montaño, A.; Cortés-Delgado, A.; Rodríguez-Gómez, F.; Arroyo-López, F.N. Multi-Statistical Approach for the Study of Volatile Compounds of Industrial Spoiled Manzanilla Spanish-Style Table Olive Fermentations. Foods 2021, 10, 1182. https://doi.org/10.3390/foods10061182
Garrido-Fernández A, Montaño A, Cortés-Delgado A, Rodríguez-Gómez F, Arroyo-López FN. Multi-Statistical Approach for the Study of Volatile Compounds of Industrial Spoiled Manzanilla Spanish-Style Table Olive Fermentations. Foods. 2021; 10(6):1182. https://doi.org/10.3390/foods10061182
Chicago/Turabian StyleGarrido-Fernández, Antonio, Alfredo Montaño, Amparo Cortés-Delgado, Francisco Rodríguez-Gómez, and Francisco Noé Arroyo-López. 2021. "Multi-Statistical Approach for the Study of Volatile Compounds of Industrial Spoiled Manzanilla Spanish-Style Table Olive Fermentations" Foods 10, no. 6: 1182. https://doi.org/10.3390/foods10061182
APA StyleGarrido-Fernández, A., Montaño, A., Cortés-Delgado, A., Rodríguez-Gómez, F., & Arroyo-López, F. N. (2021). Multi-Statistical Approach for the Study of Volatile Compounds of Industrial Spoiled Manzanilla Spanish-Style Table Olive Fermentations. Foods, 10(6), 1182. https://doi.org/10.3390/foods10061182