Fish Oil Microcapsules as Omega-3 Enrichment Strategy: Changes in Volatile Compounds of Meat Products during Storage and Cooking
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Fish Oil Microcapsules
2.3. Meat Products
2.4. Analysis of Volatile Compounds
2.5. Statistical Design
3. Results and Discussion
3.1. Profile of Volatile Compounds in D-SAU and C-SAU Batches
3.2. Storage Effect on the Profile of Volatile Compounds of D-SAU and C-SAU Enriched with Fish Oil Microcapsules
3.3. Culinary Heating Effect on the Profile of Volatile Compounds of Cooked Sausages Enriched with Fish Oil Microcapsules
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boateng, E.F.; Nasiru, M.M.; Agyemang, M. Meat: Valuable Animal-Derived Nutritional Food. A Review. Asian Food Sci. J. 2020, 15, 9–19. [Google Scholar] [CrossRef]
- Nuernberg, K.; Fischer, K.; Nuernberg, G.; Kuechenmeister, U.; Klosowska, D.; Eliminowska-Wenda, G.; Fiedler, I.; Ender, K. Effects of Dietary Olive and Linseed Oil on Lipid Composition, Meat Quality, Sensory Characteristics and Muscle Structure in Pigs. Meat Sci. 2005, 70, 63–74. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Reed, S.C.; Simpson, M.J.A.; Millington, K.J. The Health Benefits of Omega-3 Polyunsaturated Fatty Acids: A Review of the Evidence. J. Hum. Nutr. Diet. 2004, 15, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.B.; Arnesen, H.; de Caterina, R.; Rasmussen, L.H.; Kristensen, S.D. Marine N-3 Polyunsaturated Fatty Acids and Coronary Heart Disease: Part I. Background, Epidemiology, Animal Data, Effects on Risk Factors and Safety. Thromb. Res. 2005, 115, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Yashodhara, B.M.; Umakanth, S.; Pappachan, J.M.; Bhat, S.K.; Kamath, R.; Choo, B.H. Omega-3 Fatty Acids: A Comprehensive Review of Their Role in Health and Disease. Postgrad. Med. J. 2009, 85, 84–90. [Google Scholar] [CrossRef]
- Corzo, L.; Fernández-Novoa, L.; Carrera, I.; Martínez, O.; Rodríguez, S.; Alejo, R.; Cacabelos, R. Nutrition, Health, and Disease: Role of Selected Marine and Vegetal Nutraceuticals. Nutrients 2020, 12, 747. [Google Scholar] [CrossRef] [Green Version]
- Conchillo, A.; Valencia, I.; Puente, A.; Ansorena, D.; Astiasarán, I. Componentes Funcionales En Aceites de Pescado y de Alga. Nutr. Hosp. 2006, 21, 369–373. [Google Scholar]
- Jiménez-Colmenero, F. Healthier Lipid Formulation Approaches in Meat-Based Functional Foods. Technological Options for Replacement of Meat Fats by Non-Meat Fats. Trends Food Sci. Technol. 2007, 18, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Garg, M.L.; Wood, L.G.; Singh, H.; Moughan, P.J. Means of Delivering Recommended Levels of Long Chain N-3 Polyunsaturated Fatty Acids in Human Diets. J. Food Sci. 2006, 71, 66–71. [Google Scholar] [CrossRef]
- European Food Safety Authority. Reglamento (UE) 116/2010 que Modifica al Reglamento (CE) 1924/2006 en lo Relativo a la Lista de Declaraciones Nutricionales; European Food Safety Authority: Parma, Italy, 2010. [Google Scholar]
- Cunnane, S.; Drevon, C.; Harris, B.; Sinclair, A.; Spector, A. Recommendations for Intake of Polyunsaturated Fatty Acids in Healthy Adults. International Society for Study of Fatty Acids and Lipids (ISSFAL) Subcommittee. Available online: https://issfal.memberclicks.net/assets/issfal%2003%20pufaintakereccomdfinalreport.pdf (accessed on 30 January 2021).
- EU Commision Regulation (EU). No116/2010 of 9 February 2010 Amending Regulation (EC) No 1924/2006 of the European Parliament and of the Council with Regard to the List of Nutrition Claims. Off. J. Eur. Union 2010, 37, 16–18. [Google Scholar]
- Cáceres, E.; García, M.L.; Selgas, M.D. Effect of Pre-Emulsified Fish Oil—As Source of PUFA n-3 on Microstructure and Sensory Properties of Mortadella, a Spanish Bologna-Type Sausage. Meat Sci. 2008, 80, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pando, G.; Cofrades, S.; Rodríguez-Salas, L.; Jiménez-Colmenero, F. A Healthier Oil Combination and Konjac Gel as Functional Ingredients in Low-Fat Pork Liver Pâté. Meat Sci. 2011, 88, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Josquin, N.M.; Linssen, J.P.H.; Houben, J.H. Quality Characteristics of Dutch-Style Fermented Sausages Manufactured with Partial Replacement of Pork Back-Fat with Pure, Pre-Emulsified or Encapsulated Fish Oil. Meat Sci. 2012, 90, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Onwulata, C.I. Microencapsulation and Functional Bioactive Foods. J. Food Process. Preserv. 2013, 37, 510–532. [Google Scholar] [CrossRef]
- Miyashita, K.; Uemura, M.; Hosokawa, M. Effective Prevention of Oxidative Deterioration of Fish Oil: Focus on Flavor Deterioration. Annu. Rev. Food Sci. Technol. 2018, 9, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Jónsdóttir, R.; Bragadóttir, M.; Arnarson, G. Oxidatively Derived Volatile Compounds in Microencapsulated Fish Oil Monitored by Solid-Phase Microextraction (SPME). J. Food Sci. 2005, 70, 433–440. [Google Scholar] [CrossRef]
- Yang, K.M.; Cheng, M.C.; Chen, C.W.; Tseng, C.Y.; Lin, L.Y.; Chiang, P.Y. Characterization of Volatile Compounds with HS-SPME from Oxidized n-3 PUFA Rich Oils via Rancimat Tests. J. Oleo Sci. 2017, 66, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Alvarez, D.; Giuffrida, F.; Golay, P.A.; Cotting, C.; Destaillats, F.; Dionisi, F.; Keely, B. Profiles of Volatile Compounds in Milk Containing Fish Oil Analyzed by HS-SPME-GC/MS. Eur. J. Lipid Sci. Technol. 2008, 110, 277–283. [Google Scholar] [CrossRef]
- Akanbi, T.O.; Barrow, C.J. Lipase-Produced Hydroxytyrosyl Eicosapentaenoate Is an Excellent Antioxidant for the Stabilization of Omega-3 Bulk Oils, Emulsions and Microcapsules. Molecules 2018, 23, 275. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation Efficiency and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Different Combinations of Wall Materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Przybysz, M.A.; Szterk, A.; Zawiślak, M.; Dłużewska, E. Wpływ Procesu Mikrokapsułkowania i Dodatku Przeciwutleniaczy Na Stabilność Oleju Rybnego. Zywnosc. Nauka. Technol. Jakosc/Food. Sci. Technol. Qual. 2014, 21, 123–138. [Google Scholar]
- Serfert, Y.; Drusch, S.; Schwarz, K. Sensory Odour Profiling and Lipid Oxidation Status of Fish Oil and Microencapsulated Fish Oil. Food Chem. 2010, 123, 968–975. [Google Scholar] [CrossRef]
- Felix, P.H.C.; Birchal, V.S.; Botrel, D.A.; Marques, G.R.; Borges, S.V. Physicochemical and Thermal Stability of Microcapsules of Cinnamon Essential Oil by Spray Drying. J. Food Process. Preserv. 2017, 41, 12919. [Google Scholar] [CrossRef]
- Flores, M. Understanding the Implications of Current Health Trends on the Aroma of Wet and Dry Cured Meat Products. Meat Sci. 2018, 144, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Bedia, M.; Bañón, S. Relationship between Flavour Deterioration and the Volatile Compound Profile of Semi-Ripened Sausage. Meat Sci. 2013, 93, 614–620. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R. Healthy Spanish Salchichón Enriched with Encapsulated n − 3 Long Chain Fatty Acids in Konjac Glucomannan Matrix. Food Res. Int. 2016, 89, 289–295. [Google Scholar] [CrossRef]
- Aquilani, C.; Pérez-Palacios, T.; Jiménez Martín, E.; Antequera, T.; Bozzi, R.; Pugliese, C. Effetto Del Tipo Di Conservazione e Arricchimento in Omega-3 Sulla Qualità Di Hamburger Di Cinta Senese. Arch. Zootec. 2018, 67, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Pelser, W.M.; Linssen, J.P.H.; Legger, A.; Houben, J.H. Lipid Oxidation in n-3 Fatty Acid Enriched Dutch Style Fermented Sausages. Meat Sci. 2007, 75, 1–11. [Google Scholar] [CrossRef]
- Solomando, J.C.; Antequera, T.; González-Mohíno, A.; Perez-Palacios, T. Fish Oil/Lycopene Microcapsules as a Source of Eicosapentaenoic and Docosahexaenoic Acids: A Case Study on Spreads. J. Sci. Food Agric. 2020, 100, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Solomando, J.C.; Antequera, T.; Ruiz-Carrascal, J.; Pérez-Palacios, T. Improvement of Encapsulation and Stability of EPA and DHA from Monolayered and Multilayered Emulsions by High-pressure Homogenization. J. Food Process. Preserv. 2019, 44, 14290. [Google Scholar] [CrossRef]
- Solomando, J.C.; Antequera, T.; Martín, A.; Perez-Palacios, T. Effect of Omega-3 Microcapsules Addition on the Profile of Volatile Compounds in Enriched Dry-Cured and Cooked Sausages. Foods 2020, 9, 1683. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Esteban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J. Study of the Effect of Different Fiber Coatings and Extraction Conditions on Dry Cured Ham Volatile Compounds Extracted by Solid-Phase Microextraction (SPME). Talanta 2004, 64, 458–466. [Google Scholar] [CrossRef]
- Jiménez-Martín, E.; Gharsallaoui, A.; Pérez-Palacios, T.; Ruiz Carrascal, J.; Antequera Rojas, T. Volatile Compounds and Physicochemical Characteristics during Storage of Microcapsules from Different Fish Oil Emulsions. Food Bioprod. Process. 2015, 96, 52–64. [Google Scholar] [CrossRef]
- Yoo, S.S.; Kook, S.H.; Park, S.Y.; Shim, J.H.; Chin, K.B. Physicochemical Characteristics, Textural Properties and Volatile Compounds in Comminuted Sausages as Affected by Various Fat Levels and Fat Replacers. Int. J. Food Sci. Technol. 2007, 42, 1114–1122. [Google Scholar] [CrossRef]
- Perea-Sanz, L.; López-Díez, J.J.; Belloch, C.; Flores, M. Counteracting the Effect of Reducing Nitrate/Nitrite Levels on Dry Fermented Sausage Aroma by Debaryomyces Hansenii Inoculation. Meat Sci. 2020, 164, 108103. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, Q.; Zhao, H.; Zhao, M.; Yang, B. Volatile Compounds of Cantonese Sausage Released at Different Stages of Processing and Storage. Food Chem. 2010, 121, 319–325. [Google Scholar] [CrossRef]
- Giogios, I.; Grigorakis, K.; Nengas, I.; Papasolomontos, S.; Papaioannou, N.; Alexis, M.N. Fatty Acid Composition and Volatile Compounds of Selected Marine Oils and Meals. J. Sci. Food Agric. 2009, 89, 88–100. [Google Scholar] [CrossRef]
- Cano-García, L.; Rivera-Jiménez, S.; Belloch, C.; Flores, M. Generation of Aroma Compounds in a Fermented Sausage Meat Model System by Debaryomyces Hansenii Strains. Food Chem. 2014, 151, 364–373. [Google Scholar] [CrossRef]
- Corral, S.; Belloch, C.; López-Díez, J.J.; Flores, M. Lipolysis and Aroma Generation as Mechanisms Involved in Masking Boar Taint in Sodium Reduced Fermented Sausages Inoculated with Debaryomyces Hansenii Yeast. J. Sci. Food Agric. 2018, 98, 2121–2130. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Flores, M. Effect of Fat Content on Aroma Generation during Processing of Dry Fermented Sausages. Meat Sci. 2011, 87, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea-Sanz, L.; Montero, R.; Belloch, C.; Flores, M. Nitrate Reduction in the Fermentation Process of Salt Reduced Dry Sausages: Impact on Microbial and Physicochemical Parameters and Aroma Profile. Int. J. Food Microbiol. 2018, 282, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, B.A.; Campagnol, P.C.B.; Fagundes, M.B.; Wagner, R.; Pollonio, M.A.R. Generation of Volatile Compounds in Brazilian Low-Sodium Dry Fermented Sausages Containing Blends of NaC1, KC1, and CaC12 during Processing and Storage. Food Res. Int. 2015, 74, 306–314. [Google Scholar] [CrossRef] [PubMed]
- El Sheikha, A.F.; Bakar, J. Fermented meat products. In Microorganisms and Fermentation of Traditional Foods; Ray, R.C., Didier, M., Eds.; CRS Press: Boca Raton, FL, USA, 2014; Volume 9, pp. 223–248. [Google Scholar]
- Marco, A.; Navarro, J.L.; Flores, M. The Influence of Nitrite and Nitrate on Microbial, Chemical and Sensory Parameters of Slow Dry Fermented Sausage. Meat Sci. 2006, 73, 660–673. [Google Scholar] [CrossRef] [PubMed]
- Škrlep, M.; Čandek-Potokar, M.; Atorek-Lukač, N.B.; Tomažin, U.; Flores, M. Aromatic Profile, Physicochemical and Sensory Traits of Dry-Fermented Sausages Produced without Nitrites Using Pork from Krškopolje Pig Reared in Organic and Conventional Husbandry. Animals 2019, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estévez, M.; Ventanas, S.; Ramírez, R.; Cava, R. Influence of the Addition of Rosemary Essential Oil on the Volatiles Pattern of Porcine Frankfurters. J. Agric. Food Chem. 2005, 53, 8317–8324. [Google Scholar] [CrossRef]
- Chevance, F.F.V.; Farmer, L.J.; Desmond, E.M.; Novelli, E.; Troy, D.J.; Chizzolini, R. Effect of Some Fat Replacers on the Release of Volatile Aroma Compounds from Low-Fat Meat Products. J. Agric. Food Chem. 2000, 48, 3476–3484. [Google Scholar] [CrossRef]
- Chevance, F.F.V.; Farmer, L.J. Identification of Major Volatile Odor Compounds in Frankfurters. J. Agric. Food Chem. 1999, 38, 802–804. [Google Scholar] [CrossRef]
- Sirisoma, N.S.; Höld, K.M.; Casida, J.E. α- and β-Thujones (Herbal Medicines and Food Additives): Synthesis and Analysis of Hydroxy and Dehydro Metabolites. J. Agric. Food Chem. 2001, 49, 1915–1921. [Google Scholar] [CrossRef]
- Jiménez-Martín, E.; Pérez-Palacios, T.; Carrascal, J.R.; Rojas, T.A. Enrichment of Chicken Nuggets with Microencapsulated Omega-3 Fish Oil: Effect of Frozen Storage Time on Oxidative Stability and Sensory Quality. Food Bioprocess Technol. 2016, 9, 285–297. [Google Scholar] [CrossRef]
- Jacobsen, C.; Hartvigsen, K.; Lund, P.; Adler-Nissen, J.; Hølmer, G.; Meyer, A.S. Oxidation in Fish-Oil-Enriched Mayonnaise. Eur. Food Res. Technol. 2000, 211, 86–98. [Google Scholar] [CrossRef]
- Resconi, V.C.; Bueno, M.; Escudero, A.; Magalhaes, D.; Ferreira, V.; Campo, M.M. Ageing and Retail Display Time in Raw Beef Odour According to the Degree of Lipid Oxidation. Food Chem. 2018, 242, 288–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuaychan, S.; Benjakul, S.; Nuthong, P. Element Distribution and Morphology of Spotted Golden Goatfish Fish Scales as Affected by Demineralisation. Food Chem. 2016, 197, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Petisca, C.; Pérez-Palacios, T.; Farah, A.; Pinho, O.; Ferreira, I.M.P.L.V.O. Furans and Other Volatile Compounds in Ground Roasted and Espresso Coffee Using Headspace Solid-Phase Microextraction: Effect of Roasting Speed. Food Bioprod. Process. 2013, 91, 233–241. [Google Scholar] [CrossRef]
- Pérez-Palacios, T.; Petisca, C.; Henriques, R.; Ferreira, I.M.P.L.V.O. Impact of Cooking and Handling Conditions on Furanic Compounds in Breaded Fish Products. Food Chem. Toxicol. 2013, 55, 222–228. [Google Scholar] [CrossRef]
- Solomando, J.C.; Antequera, T.; Perez-Palacios, T. Evaluating the Use of Fish Oil Microcapsules as Omega-3 Vehicle in Cooked and Dry-Cured Sausages as Affected by Their Processing, Storage and Cooking. Meat Sci. 2020, 162, 108031. [Google Scholar] [CrossRef]
- Montel, M.C.; Seronie, M.P.; Talon, R.; Hebraud, M. Purification and Characterization of a Dipeptidase from Lactobacillus Sake. Appl. Environ. Microbiol. 1995, 61, 837–839. [Google Scholar] [CrossRef] [Green Version]
- Summo, C.; Caponio, F.; Tricarico, F.; Pasqualone, A.; Gomes, T. Evolution of the Volatile Compounds of Ripened Sausages as a Function of Both Storage Time and Composition of Packaging Atmosphere. Meat Sci. 2010, 86, 839–844. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative Study of Virgin Olive Oil Sensory Defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Aparicio, R.; Luna, G. Characterisation of Monovarietal Virgin Olive Oils. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. [Google Scholar] [CrossRef]
- Solomando, J.C.; Antequera, T.; Ventanas, S.; Perez-Palacios, T. Sensory Profile and Consumer Perception of Meat Products Enriched with EPA and DHA Using Fish Oil Microcapsules. Int. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Ahn, D.U.; Olson, D.G.; Jo, C.; Love, J.; Jin, S.K. Volatiles Production and Lipid Oxidation in Irradiated Cooked Sausage as Related to Packaging and Storage. J. Food Sci. 1999, 64, 226–229. [Google Scholar] [CrossRef]
- Sha, K.; Lang, Y.M.; Sun, B.Z.; Su, H.W.; Li, H.P.; Zhang, L.; Lei, Y.H.; Li, H.B.; Zhang, Y. Changes in Lipid Oxidation, Fatty Acid Profile and Volatile Compounds of Traditional Kazakh Dry-Cured Beef during Processing and Storage. J. Food Process. Preserv. 2017, 41, 13059. [Google Scholar] [CrossRef]
- Karahadian, C.; Lindsay, R.C. Evaluation of Compounds Contributing Characterizing Fishy Flavors in Fish Oils. J. Am. Oil Chem. Soc. 1989, 66, 1302–1308. [Google Scholar] [CrossRef]
- Franz, C.M.A.P.; von Holy, A. Thermotolerance of Meat Spoilage Lactic Acid Bacteria and Their Inactivation in Vacuum-Packaged Vienna Sausages. Int. J. Food Microbiol. 1996, 29, 59–73. [Google Scholar] [CrossRef]
- Dykes, G.A.; Eugene Cloete, T.; von Holy, A. Quantification of Microbial Populations Associated with the Manufacture of Vacuum-Packaged, Smoked Vienna Sausages. Int. J. Food Microbiol. 1991, 13, 239–248. [Google Scholar] [CrossRef]
- Solomando, J.C.; Antequera, T.; Pérez-Palacios, T. Study on Fish Oil Microcapsules as Neat and Added to Meat Model Systems: Enrichment and Bioaccesibility of EPA and DHA. LWT 2020, 120, 108946. [Google Scholar] [CrossRef]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Effect of Different Cooking Methods on Lipid Oxidation and Formation of Volatile Compounds in Foal Meat. Meat Sci. 2014, 97, 223–230. [Google Scholar] [CrossRef]
- Broncano, J.M.; Petrón, M.J.; Parra, V.; Timón, M.L. Effect of Different Cooking Methods on Lipid Oxidation and Formation of Free Cholesterol Oxidation Products (COPs) in Latissimus Dorsi Muscle of Iberian Pigs. Meat Sci. 2009, 83, 431–437. [Google Scholar] [CrossRef]
- Van, H.; Hwang, I.; Jeong, D.; Touseef, A. Principle of Meat Aroma Flavors and Future Prospect. Latest Res. Into Qual. Control 2012, 2, 145–176. [Google Scholar]
LRI | ID | Chemical Group/Compound | T0 | pE | T4 | pE | pS | SEM | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Co | Mo | Mu | Co | Mo | Mu | |||||||
Aliphatic hydrocarbons | ||||||||||||
497 | A | Pentane | 0.51 | 0.42 | 0.59 | NS | 1.51 | 1.47 | 1.31 | NS | *** | 0.27 |
599 | A | Hexane | 0.41 | 0.36 | 0.31 | NS | 0.13 | 0.55 | 0.17 | NS | NS | 0.07 |
704 | A | Heptane | 0.42 b | 0.48 b | 0.97 a | *** | 0.49 | 0.45 | 0.32 | NS | NS | 0.08 |
761 | A | 1-propene | n.d.b | 0.54 a | n.d.b | *** | 0.29 a | n.d.c | 0.13 b | * | NS | 0.05 |
800 | A | Octane | 6.65 | 6.41 | 6.12 | NS | 8.23 | 6.95 | 7.91 | NS | NS | 0.32 |
901 | A | Nonane | 0.54 | 0.42 | 0.61 | NS | 0.37 | 0.58 | 0.31 | NS | NS | 0.04 |
997 | A | Decane | 1.06 | 0.96 | 0.92 | NS | 1.29 | 1.39 | 1.34 | NS | *** | 0.07 |
1097 | A | Undecane | 1.92 | 1.78 | 1.86 | NS | 1.68 | 1.65 | 1.48 | NS | NS | 0.10 |
Alcohols | ||||||||||||
614 | A | 1-propanol | 0.03 b | 0.11 a | 0.10 a | * | 0.12 | 0.15 | 0.18 | NS | * | 0.02 |
687 | A | 1-penten-3-ol | n.d.b | 0.23 a | n.d.b | *** | 0.31 c | 8.51 a | 6.47 b | *** | *** | 0.25 |
820 | A | 1-pentanol | 1.32 | 1.61 | 1.42 | NS | 3.24 b | 4.53 a | 3.33 b | *** | *** | 0.06 |
1024 | A | 1-heptanol | 1.08 | 1.13 | 1.10 | NS | 1.44 | 1.40 | 1.22 | NS | NS | 0.18 |
1031 | A | 1-octen-3-ol | 2.78 c | 3.73 a | 3.21 b | NS | 2.58 | 3.97 | 3.68 | NS | NS | 0.20 |
1195 | A | 4-terpineol | 1.85 | 1.88 | 1.79 | NS | 1.68 | 1.64 | 1.58 | NS | ** | 0.03 |
Aldehydes | ||||||||||||
591 | A | 2-methyl propanal | 0.45 | 0.43 | 0.38 | NS | 0.30 | 0.37 | 0.29 | NS | NS | 0.03 |
618 | A | Butanal | 0.30 a | 0.09 b | 0.31 a | ** | 0.36 | 0.52 | 0.20 | NS | NS | 0.05 |
667 | A | 2-methyl butanal | 0.15 | 0.17 | 0.11 | NS | 0.25 | 0.20 | 0.09 | NS | NS | 0.03 |
738 | A | Pentanal | 7.91 c | 9.66 a | 8.73 b | * | 6.29 c | 15.40 a | 10.36 b | *** | ** | 0.33 |
862 | A | Hexanal | 93.84 | 96.14 | 105.06 | NS | 181.49 c | 265.60 a | 242.11 b | *** | *** | 6.23 |
942 | A | Heptanal | 8.01 | 7.19 | 7.25 | NS | 13.31 | 12.88 | 14.29 | NS | *** | 0.62 |
1050 | A | Octanal | 0.45 | 0.57 | 0.54 | NS | 0.48 | 0.44 | 0.54 | NS | NS | 0.02 |
1147 | A | Nonanal | 5.63 | 5.24 | 5.09 | NS | 12.94 c | 14.93 a | 13.82 b | * | *** | 0.13 |
1322 | A | 2-decenal | 0.96 | 0.89 | 1.05 | NS | 0.89 b | 0.90 b | 1.34 a | ** | * | 0.01 |
1395 | A | 2,4-decadienal | 0.41 | 0.46 | 0.44 | NS | 0.38 b | 0.66 a | 0.42 b | ** | NS | 0.04 |
Ketones | ||||||||||||
749 | A | 2,3-pentanedione | 0.49 | 0.44 | 0.40 | NS | 0.54 | 0.32 | 0.41 | NS | NS | 0.03 |
778 | A | 3-hydroxy-2-butanone | 0.56 a | 0.39 a | 0.11 b | *** | 0.34 | 0.29 | 0.30 | NS | NS | 0.04 |
933 | A | 2-Heptanone | 7.00 | 6.99 | 6.58 | NS | 6.06 | 5.54 | 5.06 | NS | ** | 0.27 |
981 | A | 3-Heptanone | 3.51 | 3.88 | 4.69 | NS | 2.50 | 3.62 | 3.67 | NS | NS | 0.46 |
1039 | A | 2-Octanone | 0.42 | 0.35 | 0.29 | NS | n.d. | n.d. | n.d. | - | *** | 0.05 |
1063 | A | 3,5-octadien-2-one | n.d.b | 0.11 a | n.d.b | *** | n.d.b | 3.87 a | 4.21 a | *** | *** | 0.35 |
Furans | ||||||||||||
722 | A | 2-ethyl-furan | n.d.b | 0.15 a | 0.09 a | * | n.d.c | 2.84 a | 1.14 b | *** | *** | 0.44 |
837 | A | 3-furaldehyde | 0.41 | 0.29 | 0.26 | NS | 0.27 | 0.29 | 0.24 | NS | NS | 0.02 |
1012 | A | 2-pentyl-furan | 1.93 a | 1.19 b | 1.37 b | ** | 1.60 a | 1.31 b | 1.26 b | * | NS | 0.06 |
Terpenes | ||||||||||||
982 | A | Sabinene | 8.17 | 7.89 | 7.98 | NS | 7.71 | 7.49 | 7.56 | NS | NS | 0.11 |
1003 | B | β-myrcene | 36.01 b | 36.62 b | 46.78 a | * | 38.84 | 40.05 | 41.90 | NS | NS | 0.75 |
1021 | A | α-phellandrene | 5.93 | 6.20 | 6.78 | NS | 8.72 | 8.83 | 8.17 | NS | ** | 0.12 |
1037 | A | D-Limonene | 3.65 | 3.31 | 3.72 | NS | 1.67 | 1.76 | 1.22 | NS | *** | 0.26 |
1066 | A | γ-terpinene | 2.41 | 2.06 | 2.21 | NS | 2.85 | 2.86 | 2.01 | NS | NS | 0.10 |
1105 | A | Terpene | 1.87 | 1.87 | 1.70 | NS | 1.65 | 1.51 | 1.41 | NS | NS | 0.11 |
1404 | A | α-cubebene | 1.43 | 1.36 | 1.78 | NS | 1.29 | 1.25 | 1.23 | NS | NS | 0.09 |
Acids | ||||||||||||
717 | A | Acetic acid | 478.69 b | 602.75 a | 452.62 b | *** | 374.50 b | 439.17 b | 543.82 a | *** | * | 43.89 |
895 | A | Butanoic acid | 29.05 | 27.74 | 27.48 | NS | 28.64 b | 23.33 a | 23.61 a | ** | * | 1.56 |
986 | A | Pentanoic acid | 35.66 | 36.94 | 36.54 | NS | 36.34 | 36.05 | 35.90 | NS | NS | 0.40 |
1362 | A | Nonanoic acid | 2.60 | 2.43 | 2.61 | NS | 2.42 | 2.42 | 2.63 | NS | NS | 0.08 |
1472 | A | Decanoid acid | 2.87 | 2.78 | 2.61 | NS | 2.91 | 3.20 | 3.79 | NS | NS | 0.19 |
Esters | ||||||||||||
786 | A | Methylpropyl acetate | 0.32 | 0.29 | 0.25 | NS | 0.19 | 0.19 | 0.13 | NS | * | 0.02 |
853 | A | Methyl hexanoate | 63.15 | 56.04 | 57.08 | NS | 63.64 | 63.33 | 73.61 | NS | NS | 2.76 |
Aromatics | ||||||||||||
1018 | A | Benzaldehyde | 9.30 | 8.29 | 7.64 | NS | 6.05 | 5.81 | 6.14 | NS | *** | 0.19 |
1190 | A | 4-methyl-phenol | 0.53 | 0.59 | 0.61 | NS | 0.88 a | 0.57 b | 0.52 b | ** | NS | 0.02 |
1375 | A | Eugenol | 4.18 | 4.16 | 4.34 | NS | 4.40 | 4.42 | 3.97 | NS | NS | 0.09 |
Cyclic hydrocarbons | ||||||||||||
992 | B | α-thujene | 6.22 | 5.87 | 6.01 | NS | 6.34 | 6.59 | 6.37 | NS | * | 0.10 |
1495 | A | Humulene | 0.72 | 0.75 | 0.84 | NS | 0.35 | 0.26 | 0.27 | NS | * | 0.04 |
Other | ||||||||||||
899 | B | Allyl sulphide | 2.51 a | 2.89 a | 1.94 b | ** | 1.59 | 1.43 | 1.49 | NS | 0.14 |
LRI | ID | Compound | T0 | pE | pC | T4 | pE | pC | pS | SEM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Co | Mo | Mu | Co | Mo | Mu | |||||||||||||||
Be | Af | Be | Af | Be | Af | Be | Af | Be | Af | Be | Af | |||||||||
Aliphatic hydrocarbons | ||||||||||||||||||||
499 | A | Pentane | 0.53 | 0.47 | 0.44 | 0.45 | 0.39 | 0.43 | NS | NS | 0.88 | 0.39 | 0.86 | 0.56 | 0.63 | 0.61 | NS | * | *** | 0.04 |
601 | A | Hexane | 0.23 | 0.43 | 2.12 | 0.46 | 0.84 | 0.79 | * | * | 0.12 | 0.74 | 0.25 | 0.85 | 1.25 | 0.58 | * | *** | NS | 0.09 |
695 | A | 1-Heptene | 0.80 | n.d. | 1.05 | n.d. | 0.74 | n.d. | * | *** | 0.85 | n.d. | 1.01 | n.d. | 1.10 | n.d. | NS | *** | NS | 0.08 |
703 | A | Heptane | 3.35 | 1.55 | 1.54 | 1.13 | 0.75 | 2.08 | * | NS | 3.67 | 1.35 | 0.76 | 2.37 | 0.82 | 2.24 | * | NS | NS | 0.17 |
799 | A | Octane | 1.27 | 2.75 | 2.47 | 2.68 | 1.51 | 2.50 | NS | * | 1.92 | 2.41 | 2.57 | 2.15 | 2.36 | 1.65 | NS | NS | NS | 0.11 |
812 | A | 2-octene | n.d. | 2.08 | n.d. | 2.13 | n.d. | 1.59 | NS | *** | n.d. | 1.76 | n.d. | 1.80 | n.d. | 1.62 | NS | *** | NS | 0.16 |
901 | A | Nonane | 0.23 | 1.91 | 0.46 | 2.15 | 0.32 | 1.23 | *** | *** | n.d. | 2.36 | 0.38 | 1.27 | 0.43 | 0.72 | NS | *** | NS | 0.13 |
1000 | A | Decane | n.d. | n.d. | 0.19 | n.d. | n.d. | 0.55 | * | - | 2.39 | 0.26 | 2.53 | 0.26 | 2.56 | 0.30 | NS | *** | * | 0.17 |
1101 | A | Undecane | 0.52 | 0.71 | 0.43 | 0.63 | 0.57 | 0.77 | NS | NS | 0.85 | 0.68 | 0.76 | 0.68 | 0.81 | 0.67 | NS | * | NS | 0.03 |
1200 | A | Dodecane | 0.42 | 0.43 | 0.27 | 0.49 | n.d. | 0.58 | ** | * | n.d. | 0.49 | 0.35 | 0.25 | 0.51 | 0.32 | ** | NS | NS | 0.03 |
1296 | A | Tridecane | n.d. | n.d. | n.d. | 0.31 | n.d. | 0.54 | NS | * | n.d. | n.d. | n.d. | 0.24 | n.d. | 0.30 | - | * | NS | 0.03 |
1402 | A | Tetradecane | 0.58 | 0.52 | 0.16 | 0.53 | n.d. | 0.68 | NS | NS | 0.85 | 0.50 | 0.19 | 0.68 | n.d. | 0.45 | NS | * | NS | 0.15 |
Alcohols | ||||||||||||||||||||
615 | A | 1-propanol | 0.11 | 0.14 | 0.17 | 0.13 | 0.21 | 0.16 | ** | NS | 0.18 | 0.28 | 0.69 | 0.40 | 2.09 | 0.42 | * | NS | * | 0.10 |
681 | A | 2-methyl-1-propanol | 0.98 | n.d. | 1.24 | n.d. | 1.48 | n.d. | NS | ** | 2.92 | n.d. | 2.68 | n.d. | 3.25 | n.d. | NS | * | NS | 0.26 |
825 | A | 1- pentanol | 1.33 | 1.65 | 1.23 | 1.92 | 1.22 | 1.64 | ** | * | 1.45 | 1.56 | 1.34 | 1.69 | 1.38 | 1.57 | NS | NS | NS | 0.04 |
923 | A | 1-hexanol | 0.22 | 0.78 | 0.26 | 0.88 | 0.22 | 1.11 | * | *** | 0.88 | 0.97 | 1.37 | 0.74 | 1.23 | 0.88 | NS | * | * | 0.06 |
927 | A | 4-hexen-1-ol | n.d. | 0.98 | n.d. | 1.96 | n.d. | 1.92 | * | *** | n.d. | 1.42 | n.d. | 0.98 | n.d. | 1.49 | NS | *** | NS | 0.12 |
1024 | A | 1-heptanol | 1.10 | 0.74 | 0.78 | 0.89 | 0.82 | 0.89 | NS | NS | 1.49 | 1.36 | 1.04 | 0.99 | 1.28 | 1.50 | * | NS | NS | 0.06 |
1031 | A | 1-octen-3-ol | 0.77 | 3.34 | 0.81 | 3.42 | 0.63 | 2.76 | * | *** | 2.27 | 5.60 | 3.16 | 5.00 | 2.93 | 6.02 | * | *** | *** | 0.31 |
1088 | A | 2-ethyl-1-hexanol | 0.71 | 0.40 | 0.74 | 0.46 | 0.77 | 0.89 | NS | * | 0.60 | 0.56 | 0.82 | 0.89 | 1.06 | 1.30 | * | NS | NS | 0.14 |
1092 | A | Phenyl ethyl alcohol | n.d. | n.d. | 0.25 | 0.41 | 0.24 | 0.96 | ** | ** | n.d. | n.d. | 0.24 | 0.36 | 0.32 | 0.94 | ** | * | NS | 0.06 |
Aldehydes | ||||||||||||||||||||
521 | A | Propanal | 0.16 | n.d. | 0.17 | n.d. | 0.14 | n.d. | *** | ** | 0.52 | 0.78 | 0.64 | 1.26 | 0.49 | 0.94 | - | * | *** | 0.09 |
593 | A | 2-methylpropanal | 1.30 | 1.35 | 1.14 | 1.12 | 1.16 | 1.54 | NS | * | 2.16 | 1.75 | 2.37 | 1.36 | 1.93 | 1.09 | * | * | *** | 0.08 |
621 | A | Butanal | 0.47 | n.d. | 0.75 | n.d. | 0.38 | n.d. | NS | * | 1.05 | n.d. | 1.76 | n.d. | 1.59 | n.d. | NS | *** | * | 0.11 |
667 | A | 2-methyl butanal | n.d. | 0.62 | n.d. | 0.43 | n.d. | 0.54 | NS | *** | n.d. | 0.82 | n.d. | 0.81 | n.d. | 0.76 | NS | *** | NS | 0.07 |
687 | A | 3-methyl butanal | 1.98 | 2.01 | 2.25 | 2.10 | 2.69 | 2.21 | NS | NS | 7.49 | 7.59 | 7.72 | 8.53 | 8.50 | 7.61 | NS | NS | ** | 0.53 |
738 | A | Pentanal | 5.86 | 6.00 | 5.89 | 4.66 | 4.44 | 3.34 | * | NS | 5.69 | 6.50 | 6.64 | 6.95 | 6.65 | 7.48 | * | * | * | 0.61 |
862 | A | Hexanal | 4.14 | 4.33 | 4.60 | 3.40 | 4.54 | 3.54 | NS | NS | 3.29 | 5.57 | 5.12 | 7.56 | 3.86 | 4.92 | * | * | NS | 0.16 |
904 | A | 2-hexenal | 0.31 | n.d. | 0.44 | n.d. | 0.26 | n.d. | - | *** | 0.20 | n.d. | 0.22 | n.d. | 0.54 | 0.56 | * | * | NS | 0.03 |
939 | A | Heptanal | 3.18 | 3.50 | 2.26 | 2.77 | 2.69 | 3.13 | *** | * | 3.98 | 4.33 | 5.49 | 6.26 | 5.24 | 6.84 | *** | *** | *** | 0.22 |
1047 | A | Octanal | n.d. | 0.38 | n.d. | 0.33 | n.d. | 0.43 | NS | *** | n.d. | 0.66 | n.d. | 0.31 | n.d. | 0.40 | * | ** | NS | 0.04 |
1011 | A | 2-heptenal | 0.10 | n.d. | 0.41 | n.d. | 0.11 | n.d. | - | *** | 0.23 | n.d. | 0.22 | n.d. | 0.26 | n.d. | NS | *** | - | 0.02 |
1114 | A | 2-octenal | n.d. | 0.09 | n.d. | 0.12 | n.d. | 0.18 | - | *** | 0.57 | 0.44 | 0.43 | 0.76 | 0.61 | 0.85 | * | NS | *** | 0.05 |
1147 | A | Nonanal | 0.35 | 0.50 | 0.67 | 0.55 | 0.35 | 0.87 | NS | NS | 0.73 | 0.50 | 1.04 | 0.68 | 0.99 | 0.45 | NS | * | NS | 0.25 |
1223 | A | 2-nonenal | n.d. | n.d. | 0.08 | n.d. | n.d. | n.d. | - | - | n.d. | n.d. | n.d. | n.d. | 0.09 | n.d. | - | - | - | 0.01 |
1286 | A | 2,4-nonadienal | n.d. | n.d. | 0.04 | n.d. | 0.04 | n.d. | - | - | n.d. | n.d. | 0.04 | n.d. | 0.05 | n.d. | - | - | - | n.d. |
1328 | A | 2-decenal | 0.43 | 0.79 | 0.40 | 1.79 | 0.40 | 1.09 | * | * | 0.66 | 1.07 | 1.92 | 3.51 | 0.75 | 1.60 | * | *** | * | 0.09 |
1390 | A | 2,4-decadienal | n.d. | 0.29 | 0.12 | 0.47 | n.d. | 0.37 | NS | * | 0.42 | 0.79 | 2.14 | 2.87 | 1.21 | 1.37 | NS | NS | *** | 0.04 |
Ketones | ||||||||||||||||||||
735 | A | 2-pentanone | 0.88 | n.d. | 0.78 | n.d. | 0.72 | n.d. | - | *** | 0.89 | n.d. | 0.58 | n.d. | 0.64 | n.d. | * | *** | NS | 0.07 |
744 | A | 2,3-pentanedione | n.d. | 0.34 | n.d. | 0.47 | n.d. | 0.40 | *** | *** | n.d. | 0.36 | n.d. | 0.54 | n.d. | 0.43 | - | *** | NS | 0.04 |
933 | A | 2-heptanone | 1.86 | 0.84 | 1.62 | 0.55 | 1.22 | 0.38 | * | ** | 1.03 | 1.18 | 0.40 | 0.19 | 0.33 | n.d. | * | NS | * | 0.10 |
979 | A | 3-heptanone | 3.91 | 2.27 | 3.42 | 2.39 | 3.36 | 1.09 | * | *** | 4.24 | 1.32 | 4.44 | 1.39 | 4.20 | 3.25 | NS | * | * | 0.23 |
1039 | A | 2-octanone | 0.19 | 0.89 | n.d. | 1.35 | n.d. | 0.20 | NS | *** | 0.27 | 0.29 | 0.31 | 0.30 | 0.63 | 0.33 | *** | NS | NS | 0.09 |
1342 | A | 2-undecanone | 0.04 | n.d. | n.d. | n.d. | n.d. | n.d. | - | - | 0.05 | n.d. | n.d. | n.d. | 0.07 | n.d. | - | - | - | n.d. |
Furans | ||||||||||||||||||||
720 | A | 2-ethylfuran | n.d. | 0.38 | n.d. | 0.26 | n.d. | 0.21 | NS | *** | 0.82 | 0.60 | 1.29 | 1.65 | 0.92 | 1.16 | * | NS | *** | 0.08 |
841 | A | 3-furaldehyde | 0.49 | n.d. | 0.53 | n.d. | 0.45 | n.d. | NS | * | 0.41 | n.d. | 0.43 | n.d. | 0.35 | n.d. | NS | * | NS | 0.04 |
908 | A | 2-butylfuran | n.d. | 0.35 | 0.39 | 0.41 | 0.32 | 0.13 | * | NS | 0.22 | 0.12 | 0.27 | n.d. | 0.21 | n.d. | NS | - | NS | 0.03 |
1008 | A | 2-pentyl-furan | 0.29 | 0.70 | 0.49 | 0.50 | 0.71 | 0.40 | NS | NS | 0.52 | 0.64 | 0.54 | 0.28 | 0.27 | 0.30 | NS | NS | NS | 0.03 |
Terpenes | ||||||||||||||||||||
1026 | A | 3-carene | n.d. | 1.50 | n.d. | 1.35 | n.d. | 1.47 | NS | *** | n.d. | 1.47 | n.d. | 1.23 | n.d. | 1.31 | NS | *** | NS | 0.12 |
1037 | A | D-limonene | 0.25 | 2.89 | 0.43 | 2.67 | 0.65 | 2.59 | NS | *** | 1.51 | 1.86 | 1.55 | 1.38 | 1.70 | 1.25 | NS | NS | NS | 0.13 |
1066 | A | γ-terpinene | 1.97 | 3.33 | 2.30 | 3.53 | 2.04 | 3.44 | NS | * | 2.23 | 3.80 | 2.48 | 2.24 | 1.21 | 2.32 | * | * | NS | 0.16 |
1097 | A | Terpene | 0.26 | 0.28 | 0.19 | 0.17 | 0.17 | 0.37 | NS | NS | 0.28 | 0.66 | 0.16 | 0.45 | 0.15 | 0.43 | NS | ** | * | 0.08 |
1136 | A | Terpinolene | 0.70 | n.d. | 0.67 | n.d. | 0.62 | n.d. | NS | ** | 0.39 | n.d. | 0.58 | n.d. | 0.28 | n.d. | * | * | * | 0.05 |
1116 | A | β-terpinene | n.d. | n.d. | 0.31 | n.d. | 0.40 | n.d. | NS | *** | n.d. | n.d. | n.d. | n.d. | 0.61 | n.d. | - | - | NS | 0.09 |
1195 | A | 4-terpineol | n.d. | n.d. | 0.32 | n.d. | n.d. | n.d. | - | - | n.d. | n.d. | 0.11 | n.d. | n.d. | n.d. | - | - | - | 0.02 |
1491 | A | Isocayophillene | 0.34 | n.d. | 0.26 | n.d. | 0.29 | 0.46 | NS | * | n.d. | n.d. | n.d. | 0.50 | n.d. | n.d. | - | - | - | 0.03 |
Acids | ||||||||||||||||||||
716 | A | Acetic acid | n.d. | n.d. | n.d. | 0.04 | 0.44 | 0.14 | NS | - | n.d. | 0.34 | 0.15 | 0.37 | 0.46 | 0.64 | *** | NS | NS | 0.04 |
895 | A | Butanoic acid | 3.36 | 2.50 | 2.44 | 2.41 | 2.01 | 2.10 | ** | NS | 3.43 | 2.14 | 3.47 | 2.90 | 5.19 | 2.98 | * | ** | * | 0.15 |
898 | A | 2-butenoic acid | n.d. | 0.27 | n.d. | 0.33 | n.d. | 0.51 | - | *** | n.d. | 0.26 | n.d. | 0.17 | n.d. | 0.40 | NS | * | NS | 0.03 |
986 | A | Pentanoic acid | 1.14 | 1.99 | 0.73 | 1.09 | 0.63 | 0.72 | *** | ** | 0.45 | 1.27 | 0.65 | 1.05 | 0.57 | 0.69 | NS | NS | NS | 0.08 |
1273 | A | Octanoic acid | n.d. | 0.45 | n.d. | 0.35 | n.d. | n.d. | NS | NS | n.d. | 0.49 | n.d. | 0.42 | n.d. | 0.14 | NS | * | NS | 0.13 |
1366 | A | Nonanoic acid | 0.43 | 0.49 | 0.54 | 0.46 | 0.39 | 0.67 | NS | NS | 0.61 | 0.74 | 0.32 | 0.41 | 0.68 | 0.39 | ** | NS | NS | 0.04 |
1461 | A | Decanoid acid | 0.33 | 0.44 | 0.31 | 0.37 | 0.66 | 0.23 | * | NS | 0.62 | 0.83 | 0.85 | 1.07 | 0.74 | 2.72 | NS | * | * | 0.18 |
Esters | ||||||||||||||||||||
656 | A | Methyl propanoate | n.d. | 0.07 | n.d. | 0.26 | n.d. | 0.37 | *** | *** | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | - | - | 0.02 |
750 | A | Methyl butanoate | 1.27 | n.d. | 1.04 | n.d. | 1.02 | n.d. | NS | *** | 0.99 | n.d. | 1.08 | n.d. | 1.06 | n.d. | NS | *** | NS | 0.20 |
836 | A | Ethyl butanoate | 2.31 | 2.34 | 2.56 | 2.49 | 2.81 | 2.62 | ** | NS | 3.18 | 1.96 | 3.44 | 1.49 | 3.50 | 1.43 | NS | *** | NS | 0.11 |
952 | A | Methyl hexanoate | 3.39 | n.d. | 3.95 | n.d. | 3.37 | n.d. | NS | *** | 3.44 | n.d. | 3.76 | n.d. | 4.61 | n.d. | * | *** | NS | 0.33 |
Aromatics | ||||||||||||||||||||
1018 | A | Benzaldehyde | 2.98 | 1.76 | 2.01 | 2.21 | 1.50 | 1.85 | * | * | 4.36 | 4.47 | 4.18 | 3.07 | 3.06 | 3.43 | * | NS | *** | 0.19 |
1190 | A | 4-methyl-phenol | 0.40 | 1.33 | 0.41 | 0.93 | 0.46 | 0.81 | NS | * | 0.24 | 0.23 | 0.38 | 0.36 | 0.36 | 0.50 | NS | NS | * | 0.18 |
1305 | B | Safrole | 0.05 | 0.45 | 0.04 | 0.51 | 0.03 | 0.40 | - | *** | 0.05 | 0.55 | 0.03 | 0.31 | 0.04 | 0.21 | * | * | NS | 0.03 |
Cyclic hydrocarbons | ||||||||||||||||||||
980 | B | β-thujene | 5.20 | 4.56 | 3.90 | 2.99 | 4.90 | 3.67 | * | ** | 4.90 | 4.79 | 4.79 | 2.20 | 5.30 | 2.75 | * | *** | NS | 0.41 |
991 | B | α-thujene | 7.28 | 8.05 | 5.51 | 5.23 | 5.51 | 5.33 | ** | NS | 8.26 | 7.18 | 6.13 | 5.17 | 6.45 | 5.91 | ** | * | NS | 0.22 |
1422 | B | cis-muurola-4(14),5-diene | n.d. | 0.20 | n.d. | 0.19 | n.d. | n.d. | - | - | n.d. | 0.26 | n.d. | n.d. | n.d. | 0.24 | - | . | - | 0.02 |
1524 | A | δ-cadinene | 0.47 | 0.43 | 0.63 | 0.41 | 0.36 | 0.65 | NS | NS | 0.38 | 0.57 | 0.83 | 0.26 | 0.58 | 0.34 | NS | NS | NS | 0.04 |
Pyrazines | ||||||||||||||||||||
863 | A | 2-methylpyrazine | 0.45 | 0.26 | 0.30 | 0.38 | 0.37 | 0.28 | NS | NS | 0.26 | 0.34 | 0.20 | 0.14 | 0.29 | 0.20 | NS | NS | NS | 0.11 |
947 | A | 2,6-dimethylpyrazine | n.d. | 0.22 | 0.38 | 0.19 | n.d. | 0.24 | NS | NS | n.d. | 0.44 | n.d. | 0.41 | n.d. | 0.55 | NS | * | NS | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solomando, J.C.; Antequera, T.; Martín, A.; Perez-Palacios, T. Fish Oil Microcapsules as Omega-3 Enrichment Strategy: Changes in Volatile Compounds of Meat Products during Storage and Cooking. Foods 2021, 10, 745. https://doi.org/10.3390/foods10040745
Solomando JC, Antequera T, Martín A, Perez-Palacios T. Fish Oil Microcapsules as Omega-3 Enrichment Strategy: Changes in Volatile Compounds of Meat Products during Storage and Cooking. Foods. 2021; 10(4):745. https://doi.org/10.3390/foods10040745
Chicago/Turabian StyleSolomando, Juan Carlos, Teresa Antequera, Alberto Martín, and Trinidad Perez-Palacios. 2021. "Fish Oil Microcapsules as Omega-3 Enrichment Strategy: Changes in Volatile Compounds of Meat Products during Storage and Cooking" Foods 10, no. 4: 745. https://doi.org/10.3390/foods10040745
APA StyleSolomando, J. C., Antequera, T., Martín, A., & Perez-Palacios, T. (2021). Fish Oil Microcapsules as Omega-3 Enrichment Strategy: Changes in Volatile Compounds of Meat Products during Storage and Cooking. Foods, 10(4), 745. https://doi.org/10.3390/foods10040745