Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Sampling
2.3. Extraction Procedure of Bioactive Compounds
2.4. Determination of Uronic Acid Content
2.5. Determination of Sugar Content
2.6. Determination of Individual Sugars
2.7. Determination of Total Phenolic Content
2.8. Determination of Phenolic Profile Using HPLC-DAD
2.9. Determination of Antioxidant Activity
2.9.1. DPPH Radical Scavenging Capacity
2.9.2. ABTS Radical Scavenging Capacity
2.9.3. Ferric Reducing Antioxidant Power (FRAP)
2.10. Statistical Analysis
3. Results and Discussions
3.1. Total Sugar Content
3.2. Uronic Acids Content
3.3. Sugar Profile
3.4. Total Phenolic Content
3.5. Phenolic Profile
3.6. Antioxidant Activity
3.7. Correlations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perveen, K.; Bokhari, N.A.; Soliman, D.A. Antibacterial activity of Phoenix dactylifera L. leaf and pit extracts against selected Gram negative and Gram positive pathogenic bacteria. J. Med. Plants Res. 2012, 6, 296–300. [Google Scholar]
- Qadir, A.; Shakeel, F.; Ali, A.; Faiyazuddin, M. Phytotherapeutic potential and pharmaceutical impact of Phoenix dactylifera (date palm): Current research and future prospects. J. Food Sci. Technol. 2020, 57, 1191–1204. [Google Scholar] [CrossRef]
- Saleh, E.A.; Tawfik, M.S.; Abu-Tarboush, H.M. Phenolic contents and antioxidant activity of various date palm (Phoenix dactylifera L.) fruits from Saudi Arabia. Food Nutr. Sci. 2011, 2, 1134. [Google Scholar]
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.)–A review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020, 308. [Google Scholar] [CrossRef] [PubMed]
- Ghnimi, S.; Al-Shibli, M.; Al-Yammahi, H.R.; Al-Dhaheri, A.; Al-Jaberi, F.; Jobe, B.; Kamal-Eldin, A. Reducing sugars, organic acids, size, color, and texture of 21 Emirati date fruit varieties (Phoenix dactylifera, L.). NFS J. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Mrabet, A.; Hammadi, H.; Rodríguez-Gutiérrez, G.; Jiménez-Araujo, A.; Sindic, M. Date Palm Fruits as a Potential Source of Functional Dietary Fiber: A Review. Food Sci. Technol. Res. 2019, 25, 1–10. [Google Scholar] [CrossRef]
- Haider, M.S.; Khan, I.A.; Jaskani, M.J.; Naqvi, S.A.; Khan, M.M. Biochemical attributes of dates at three maturation stages. Emir. J. Food Agric. 2014, 953–962. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Biochemical changes in fruit of an early and a late date palm cultivar during development and ripening. Int. J. Fruit Sci. 2011, 11, 167–183. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Ahmed, A.W.K.; Robinson, R.K. Chemical composition of date varieties as influenced by the stage of ripening. Food Chem. 1995, 54, 305–309. [Google Scholar] [CrossRef]
- Shenasi, M.; Aidoo, K.; Candlish, A. Microflora of date fruits and production of aflatoxins at various stages of maturation. Int. J. Food Microbiol. 2002, 79, 113–119. [Google Scholar] [CrossRef]
- Shahdadi, F.; Mirzaei, H.; Garmakhany, A.D. Study of phenolic compound and antioxidant activity of date fruit as a function of ripening stages and drying process. J. Food Sci. Technol. 2015, 52, 1814–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastegar, S.; Rahemi, M.; Baghizadeh, A.; Gholami, M. Enzyme activity and biochemical changes of three date palm cultivars with different softening pattern during ripening. Food Chem. 2012, 134, 1279–1286. [Google Scholar] [CrossRef]
- El Arem, A.; Saafi, E.B.; Flamini, G.; Issaoui, M.; Ferchichi, A.; Hammami, M.; Helall, A.N.; Achour, L. Volatile and nonvolatile chemical composition of some date fruits (Phoenix dactylifera L.) harvested at different stages of maturity. Int. J. Food Sci. Technol. 2012, 47, 549–555. [Google Scholar] [CrossRef]
- Al-zoreky, N.S.; Al–Taher, A.Y. Antibacterial activity of spathe from Phoenix dactylifera L. against some food-borne pathogens. Ind. Crop. Prod. 2015, 65, 241–246. [Google Scholar] [CrossRef]
- Mrabet, A.; Jiménez-Araujo, A.; Fernández-Bolaños, J.; Rubio-Senent, F.; Lama-Muñoz, A.; Sindic, M.; Rodríguez-Gutiérrez, G. Antioxidant phenolic extracts obtained from secondary Tunisian date varieties (Phoenix dactylifera L.) by hydrothermal treatments. Food Chem. 2016, 196, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Mrabet, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Hamza, H.; Rodríguez-Arcos, R.; Guillén-Bejarano, R.; Sindic, M.; Jiménez-Araujo, A. Enzymatic conversion of date fruit fiber concentrates into a new product enriched in antioxidant soluble fiber. LWT-Food Sci. Technol. 2017, 75, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Mrabet, A.; García-Borrego, A.; Jiménez-Araujo, A.; Fernández-Bolaños, J.; Sindic, M.; Rodríguez-Gutiérrez, G. Phenolic extracts obtained from thermally treated secondary varieties of dates: Antimicrobial and antioxidant properties. Lwt-Food Sci. Technol. 2017, 79, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Bolaños Guzmán, J.; Rodríguez Gutiérrez, G.; Lama Muñoz, A.; Sánchez Moral, P. Dispositivo y Procedimiento Para el Tratamiento de los Subproductos de la Obtención de Aceite de Oliva. 2012. Available online: https://digital.csic.es/handle/10261/54269 (accessed on 25 February 2021).
- Rubio-Senent, F.t.; Rodríguez-Gutíerrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. New phenolic compounds hydrothermally extracted from the olive oil byproduct alperujo and their antioxidative activities. J. Agric. Food Chem. 2012, 60, 1175–1186. [Google Scholar] [CrossRef]
- Mrabet, A.; Rodríguez-Arcos, R.; Guillén-Bejarano, R.; Chaira, N.; Ferchichi, A.; Jiménez-Araujo, A. Dietary fiber from Tunisian common date cultivars (Phoenix dactylifera L.): Chemical composition, functional properties, and antioxidant capacity. J. Agric. Food Chem. 2012, 60, 3658–3664. [Google Scholar] [CrossRef]
- Ziadi, M.; Gaabeb, N.; Mrabet, A.; Ferchichi, A. Variation in physicochemical and microbiological characteristics of date palm sap (Phoenix dactylifera) during the tapping period in oasian ecosystem of Southern Tunisia. Int. Food Res. J. 2014, 21, 561–567. [Google Scholar]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Deroanne, C.; Drira, N.-E.; Attia, H. Date flesh: Chemical composition and characteristics of the dietary fibre. Food Chem. 2008, 111, 676–682. [Google Scholar] [CrossRef]
- El-Sohaimy, S.; Hafez, E. Biochemical and nutritional characterizations of date palm fruits (Phoenix dactylifera L.). J. Appl. Sci. Res. 2010, 6, 1060–1067. [Google Scholar]
- Sawaya, W.; Khatchadourian, H.; Khalil, J.; Safi, W.; Al-Shalhat, A. Growth and compositional changes during the various developmental stages of some Saudi Arabian date cultivars. J. Food Sci. 1982, 47, 1489–1492. [Google Scholar] [CrossRef]
- Hachani, S.; Hamia, C.; Boukhalkhal, S.; Silva, A.M.; Djeridane, A.; Yousfi, M. Morphological, physico-chemical characteristics and effects of extraction solvents on UHPLC-DAD-ESI-MSn profiling of phenolic contents and antioxidant activities of five date cultivars (Phoenix dactylifera L.) growing in Algeria. NFS J. 2018, 13, 10–22. [Google Scholar] [CrossRef]
- Benmeddour, Z.; Mehinagic, E.; Le Meurlay, D.; Louaileche, H. Phenolic composition and antioxidant capacities of ten Algerian date (Phoenix dactylifera L.) cultivars: A comparative study. J. Funct. Foods 2013, 5, 346–354. [Google Scholar] [CrossRef]
- Benkerrou, F.; Amrane, M.; Louaileche, H. Ultrasonic-assisted extraction of total phenolic contents from Phoenix dactylifera and evaluation of antioxidant activity: Statistical optimization of extraction process parameters. J. Food Meas. Charact. 2018, 12, 1910–1916. [Google Scholar] [CrossRef]
- Djaoudene, O.; Bey, M.B.; Louaileche, H. Physicochemical Characteristics and Nutritional Compositions of Some Date (Phoenix dactylifera L.) Fruit Cultivars. Acta Univ. Cibiniensis. Ser. E Food Technol. 2019, 23, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Biglari, F.; AlKarkhi, A.F.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar] [CrossRef]
- Besbes, S.; Drira, L.; Blecker, C.; Deroanne, C.; Attia, H. Adding value to hard date (Phoenix dactylifera L.): Compositional, functional and sensory characteristics of date jam. Food Chem. 2009, 112, 406–411. [Google Scholar] [CrossRef]
- Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem. 2005, 89, 411–420. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Farsi, S.A. Instrumental texture profile analysis (TPA) of date flesh as a function of moisture content. J. Food Eng. 2005, 66, 505–511. [Google Scholar] [CrossRef]
- Allaith, A.A.A. Antioxidant activity of Bahraini date palm (Phoenix dactylifera L.) fruit of various cultivars. Int. J. Food Sci. Technol. 2008, 43, 1033–1040. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Antioxidant capacity, antioxidant compounds and antioxidant enzyme activities in five date cultivars during development and ripening. Sci. Hortic. 2011, 129, 688–693. [Google Scholar] [CrossRef]
Extracts | ||||
---|---|---|---|---|
Stage | Sample | Hydrothermal | Acetonic | Methanolic |
Rutab | Dalt | 59.88 ± 8.11 c | 73.52 ± 4.70 b | 80.73 ± 5.37 a |
Deglet Nour | 55.82 ± 3.32 c | 76.81 ± 9.31 b | 82.45 ± 7.87 a | |
Ghars | 59.33 ± 1.45 c | 73.94 ± 3.28 b | 81.58 ± 10.72 a | |
Tamezwert N’telet | 51.42 ± 2.45 c | 67.78 ± 7.85 b | 75.91 ± 2.22 a | |
Tamjouhert | 43.29 ± 4.43 b | 77.52 ± 4.70 a | 82.35 ± 5.96 a | |
Tazarzeit | 26.12 ± 1.20 c | 78.89 ± 6.35 b | 88.59 ± 3.34 a | |
Tamr | Dalt | 61.24 ± 1.33 b | 80.15 ± 2.42 a | 82.69 ± 7.86 a |
Deglet Nour | 62.15 ± 3.42 b | 82.09 ± 3.44 a | 85.5 ± 5.54 a | |
Ghars | 62.51 ± 3.26 b | 81.04 ± 5.14 a | 83.73 ± 1.54 a | |
Tamezwert N’telet | 61.82 ± 4.55 c | 71.52 ± 3.55 b | 79.35 ± 9.26 a | |
Tamjouhert | 52.32 ± 3.72 b | 82.19 ± 7.88 a | 84.72 ± 4.01 a | |
Tazarzeit | 42.24 ± 3.82 b | 83.26 ± 4.33 a | 85.89 ± 10.2 a | |
Uronic Acids Content (mg/100 mg DW) | ||||
Rutab | Dalt | 14.01 ± 0.89 a | 3.82 ± 0.33 b | 2.27 ± 0.55 b |
Deglet Nour | 9.92 ± 0.72 a | 5.34 ± 0.36 b | 4.8 ± 1.27 b | |
Ghars | 10.99 ± 0.68 a | 3.73 ± 0.16 b | 2.87 ± 0.34 b | |
Tamezwert N’telet | 15.57 ± 1.12 f | 8.6 ± 0.74 e | 3.48 ± 0.87 a | |
Tamjouhert | 11.49 ± 0.92 a | 4.48 ± 0.17 c | 7.2 ± 0.58 b | |
Tazarzeit | 6.74 ± 0.15 a | 5.71 ± 0.15 A | 5.13 ± 0.15 a | |
Tamr | Dalt | 14.35 ± 0.31 a | 6.12 ± 0.59 b | 6.63 ± 0.42 b |
Deglet Nour | 11.02 ± 1.26 a | 12.66 ± 0.17 a | 6.91 ± 0.97 b | |
Ghars | 12.53 ± 1.1 a | 8.77 ± 0.67 b | 11.65 ± 0.37 a | |
Tamezwert N’telet | 8.12 ± 0.53 a | 7.38 ± 0.77 a | 4.98 ± 0.38 b | |
Tamjouhert | 13.87 ± 1.73 b | 16.33 ± 0.9 a | 16.28 ± 2.07 a | |
Tazarzeit | 3.15 ± 0.56 b | 8.67 ± 0.6 a | 4.53 ± 0.37 b | |
Total Phenolic Content (mg/100 mg DW) | ||||
Rutab | Dalt | 492.21 ± 13.04 a | 146 ± 0.90 b | 133.58 ± 8.23 c |
Deglet Nour | 548.46 ± 23.83 a | 259.24 ± 26.16 b | 204.44 ± 5.49 c | |
Ghars | 526.43 ± 5.88 a | 213.44 ± 9.5 b | 188.47 ± 7.84 c | |
Tamezwert N’telet | 424.86 ± 11.05 a | 191.28 ± 2.83 b | 160.98 ± 13.14 c | |
Tamjouhert | 606.92 ± 63.88 a | 300.13 ± 1.97 b | 251.94 ± 3.59 b | |
Tazarzeit | 478.85 ± 26.10 a | 247.84 ± 16.52 b | 188.74 ± 10.77 c | |
Tamr | Dalt | 492.21 ± 13.04 a | 146 ± 0.90 b | 133.58 ± 8.23 b |
Deglet Nour | 548.46 ± 23.83 a | 259.24 ± 26.16 b | 204.44 ± 5.49 b | |
Ghars | 526.43 ± 5.88 a | 213.44 ± 9.5 b | 188.47 ± 7.84 c | |
Tamezwert N’telet | 424.86 ± 11.05 a | 191.28 ± 2.83 b | 160.98 ± 13.14 b | |
Tamjouhert | 606.92 ± 63.88 a | 300.13 ± 1.97 b | 251.94 ± 3.59 b | |
Tazarzeit | 478.85 ± 26.10 a | 247.84 ± 16.52 b | 188.74 ± 10.77 c |
Stage | Sample | Ram | Fuc | Ara | Xyl | Man | Gal | Glu | Total | |
---|---|---|---|---|---|---|---|---|---|---|
Hydrothermal | Rutab | Dalt | 2.47 ± 0.07 c | nd | 5.17 ± 0.32 b | 1.82 ± 2.36 c | 2.43 ± 0.21 c | nd | 19.03 ± 2.61 a | 30.93 ± 5.68 |
Deglet Nour | 2.52 ± 0.27 c | nd | 8.46 ± 2.64 b | 5.42 ± 2.02 b | 3.18 ± 1.49 c | 0.64 ± 0.83 d | 32.08 ± 0.27 a | 52.29 ± 9.87 | ||
Ghars | 2.66 ± 0.13 c | nd | nd | 4.92 ± 0.53 b | nd | nd | 12.70 ± 1.48 a | 20.28 ± 0.93 | ||
Tamezwert N’telet | 2.95 ± 0.19 b | nd | 5.58 ± 0.02 b | 3 ± 3.77 b | 13.94 ± 2.65 a | nd | 11.11 ± 1.48 a | 36.57 ± 8.11 | ||
Tamjouhert | 2.4 ± 0.47 b | 1.86 ± 0.35 b | 4.74 ± 0 b | 3.69 ± 0.03 b | 2.52 ± 0.02 b | nd | 26.88 ± 2.15 a | 42.09 ± 3.02 | ||
Tazarzeit | 2.34 ± 0.5 c | 1.16 ± 0.05 c | 7.1 ± 2.56 b | 4.6 ± 0.39 c | 9.5 ± 2.18 b | 0.72 ± 0.08 d | 12.35 ± 0.46 a | 37.77 ± 6.22 | ||
Tamr | Dalt | 2.54 ± 0.06 b | nd | nd | nd | 3.11 ± 0.02 b | nd | 61.45 ±5.40 a | 67.10 ± 5.47 | |
Deglet Nour | 2.48 ± 0.09 b | nd | 5.36 ± 0.17 b | 4.03 ± 0.05 b | 2.89 ± 0.9 b | nd | 79.83 ± 7.66 a | 94.59 ± 8.87 | ||
Ghars | 2.32 ± 0.02 b | nd | nd | nd | 2.15 ± 0.12 b | nd | 58.54 ± 1.15 a | 63.01 ± 1.30 | ||
Tamezwert N’telet | 2.69 ± 0.26 b | 1.26 ± 0 b | nd | nd | 2.28 ± 0.15 b | nd | 53.18 ± 2.85 a | 59.41 ± 3.26 | ||
Tamjouhert | 2.25 ± 0 b | nd | 5.2 ± 0.05 b | 3.93 ± 0.04 b | 2.17 ± 0.02 b | nd | 115.85 ± 9.22 a | 129.39 ± 9.33 | ||
Tazarzeit | 2.35 ± 0.05 a | nd | nd | 3.66 ± 0.01 a | 2.31 ± 0.11 a | nd | 135.16 ± 31.52 a | 143.49 ± 31.69 | ||
Acetonic | Rutab | Dalt | 4.28 ± 0.11 c | nd | 8.49 ± 0.87 b | 2.99 ± 3.87 c | 3.77 ± 0.71 c | 0.29 ± 0.37 d | 51.61 ± 5.55 a | 71.42 ± 0.38 |
Deglet Nour | 3.34 ± 0.57 c | 0.96 ± 1.25 d | 8.06 ± 0.49 b | 6.63 ± 0.79 b | 9.52 ± 0.05 b | 1.23 ± 0.46 c | 62.87 ± 4.99 a | 92.62 ± 4.02 | ||
Ghars | 4.41 ± 0.36 d | 2.48 ± 0.26 d | 8.95 ± 0.84 c | 7.09 ± 0.59 c | 29.97 ± 1.13 b | nd | 63.10 ± 1.53 a | 116.00 ± 1.00 | ||
Tamezwert N’telet | 4.12 ± 0.18 d | 2.75 ± 0.06 d | 23.74 ± 18.63 b | 23.57 ± 0.89 b | 7.25 ± 1.36 c | 9.48 ± 2.26 c | 62.89 ± 0.19 a | 133.80 ± 14.03 | ||
Tamjouhert | 1.43 ± 2.02 d | 3.61 ± 0.16 d | 19.07 ± 1.98 c | 12.24 ± 0.99 c | 49.79 ± 15.89 b | nd | 78.98 ± 4.80 a | 165.13 ± 12.02 | ||
Tazarzeit | 3.77 ± 0.05 d | 1.96 ± 0 d | 8.86 ± 0.33 c | 6.24 ± 0.15 c | 20.52 ± 5.16 b | nd | 98.50 ± 0.42 a | 139.86 ± 6.12 | ||
Tamr | Dalt | 3.78 ± 0.54 c | nd | 8.23 ± 0.81 b | 6.29 ± 0.2 b | 4.17 ± 0.65 c | nd | 168.46 ± 4.13 a | 172.22 ± 4.64 | |
Deglet Nour | 3.59 ± 0.75 c | 1.68 ± 2.17 d | 7.78 ± 0.08 b | 2.99 ± 3.87 c | 10.59 ± 2.6 b | nd | 235.14 ± 3.39 a | 261.77 ± 4.63 | ||
Ghars | 1.59 ± 2.25 d | 1.98 ± 2.54 d | 9.93 ± 0.68 c | 15.03 ± 1.02 b | 10.82 ± 4.76 c | nd | 222.67 ± 16.11 a | 262.04 ± 8.47 | ||
Tamezwert N’telet | 4.28 ± 0.22 c | 1.95 ± 0.01 d | 7.98 ± 0.23 b | 5.44 ± 0.72 c | 4.41 ± 5.52 c | nd | 192.41 ± 2.10 a | 216.47 ± 4.58 | ||
Tamjouhert | 3.65 ± 0.3 d | 0.91 ± 1.18 e | 7.64 ± 0.28 c | 6.29 ± 0.48 c | 10.29 ± 0.67 b | nd | 393.99 ± 36.38 a | 422.78 ± 38.73 | ||
Tazarzeit | 4.33 ± 0.18 c | nd | 8.56 ± 0.85 b | 3.56 ± 4.51 c | 4.53 ± 0.53 c | nd | 677.59 ± 7.60 a | 698.57 ± 2.61 | ||
Methanolic | Rutab | Dalt | 5.13 ± 1.51 d | nd | 12.5 ± 0.01 c | 10.33 ± 1.61 c | 15.3 ± 12.11 b | nd | 58.51 ± 1.43 a | 93.02 ± 16.67 |
Deglet Nour | 6.24 ± 0 c | nd | 11.6 ± 0 b | nd | 7.5 ± 0 c | nd | 57.63 ± 4.06 a | 76.82 ± 4.06 | ||
Ghars | 7.67 ± 0.24 e | 3.3 ± 3.81 f | 36.23 ± 14.06 c | 12.83 ± 3.12 d | 48.74 ± 37.28 b | 3.5 ± 4.04 f | 78.41 ± 10.96 a | 155.59 ± 73.51 | ||
Tamezwert N’telet | 4.86 ± 0.6 d | nd | 11.82 ± 0.06 b | 8.89 ± 0.3 c | 18.6 ± 0.01 b | nd | 68.56 ± 14.69 a | 100.10 ± 15.66 | ||
Tamjouhert | 5.2 ± 0 d | 4.4 ± 0 d | 11.88 ± 0 c | 10.48 ± 0 c | 46.21 ± 0 b | nd | 78.21 ± 1.63 a | 144.80 ± 1.63 | ||
Tazarzeit | 8.6 ± 2.19 d | 1.94 ± 2.48 e | 12.85 ± 0.38 c | 12.76 ± 3.99 c | 30.03 ± 12.88 b | 0.95 ± 1.21 e | 147.75 ± 0.63 a | 194.24 ± 23.77 | ||
Tamr | Dalt | 8.24 ± 3.64 c | 2 ± 2.83 d | 17.21 ± 4.41 b | nd | 19.1 ± 11.75 b | nd | 229.86 ± 6.9 a | 276.41 ± 29.53 | |
Deglet Nour | 6.55 ± 0.62 d | nd | 13.57 ± 2.14 c | 10.99 ± 1.12 c | 33.81 ± 18.97 b | nd | 312.42 ± 1.86 a | 377.34 ± 24.70 | ||
Ghars | 8.13 ± 1.88 c | 3.69 ± 0.7 a | 11.72 ± 0.06 b | 9.49 ± 0.97 c | 14.01 ± 0.93 b | nd | 117.91 ± 0.46 a | 149.44 ± 5.00 | ||
Tamezwert N’telet | 5.42 ± 1.02 d | 5.44 ± 1.04 a | 12.14 ± 0.07 c | 10.04 ± 0.62 c | 18.6 ± 6.39 b | nd | 242.31 ± 5.57 a | 260.44 ± 14.70 | ||
Tamjouhert | 6.1 ± 0.44 e | nd | 24.34 ± 16.71 c | 18.86 ± 11.66 d | 69.61 ± 11.3 b | nd | 586.18 ± 24.72 a | 644.45 ± 64.83 | ||
Tazarzeit | 7.55 ± 0.74 d | 4.84 ± 0.6 e | 12.22 ± 0.33 c | 11.75 ± 0.76 c | 48.24 ± 0.08 b | nd | 489.48 ± 28.06 a | 514.37 ± 30.57 |
ABTS | DPPH | FRAP | TPC | IPC | Gallic Acid | Catechin | TSC | HMF | |
---|---|---|---|---|---|---|---|---|---|
ABTS | −0.47 | 0.70 | 0.68 | 0.76 | 0.80 | −0.33 | −0.24 | 0.29 | |
DPPH | −0.47 | −0.52 | −0.43 | −0.37 | −0.24 | 0.04 | 0.35 | −0.03 | |
FRAP | 0.70 | −0.52 | 0.72 | 0.56 | 0.44 | −0.21 | −0.17 | 0.05 | |
TPC | 0.68 | −0.43 | 0.72 | 0.90 | 0.57 | 0.05 | −0.16 | 0.12 | |
IPC | 0.76 | −0.37 | 0.56 | 0.90 | 0.90 | −0.36 | −0.37 | 0.31 | |
Gallic acid | 0.80 | −0.24 | 0.44 | 0.57 | 0.90 | 0.24 | −0.38 | 0.40 | |
Catechin | −0.33 | 0.04 | −0.21 | 0.05 | −0.36 | −0.24 | 0.02 | −0.14 | |
TSC | −0.24 | 0.35 | −0.17 | −0.16 | −0.37 | −0.38 | 0.02 | 0.98 | |
HMF | 0.29 | −0.03 | 0.05 | 0.12 | 0.31 | 0.40 | −0.14 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassoult, M.; Kati, D.E.; Fernández-Prior, M.Á.; Bermúdez-Oria, A.; Fernandez-Bolanos, J.; Rodríguez-Gutiérrez, G. Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods 2021, 10, 503. https://doi.org/10.3390/foods10030503
Tassoult M, Kati DE, Fernández-Prior MÁ, Bermúdez-Oria A, Fernandez-Bolanos J, Rodríguez-Gutiérrez G. Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods. 2021; 10(3):503. https://doi.org/10.3390/foods10030503
Chicago/Turabian StyleTassoult, Malika, Djamel Edine Kati, María África Fernández-Prior, Alejandra Bermúdez-Oria, Juan Fernandez-Bolanos, and Guillermo Rodríguez-Gutiérrez. 2021. "Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems" Foods 10, no. 3: 503. https://doi.org/10.3390/foods10030503
APA StyleTassoult, M., Kati, D. E., Fernández-Prior, M. Á., Bermúdez-Oria, A., Fernandez-Bolanos, J., & Rodríguez-Gutiérrez, G. (2021). Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods, 10(3), 503. https://doi.org/10.3390/foods10030503