Demographic, Anthropometric and Food Behavior Data towards Healthy Eating in Romania
Abstract
:1. Introduction
2. Materials and Methods
- Q1—I am very concerned about the hygiene and safety of the food I eat
- Q2—It is important for me that my diet is low in fat
- Q3—Usually, I follow a healthy and balanced diet
- Q4—It is important for me that my daily diet contains a lot of vitamins and minerals
- Q5—I do not avoid foods, even if they may raise my cholesterol
- Q6—I try to eat foods that do not contain additives
- Q7—I do not eat processed foods, because of their lower nutritional quality
- Q8—It is important for me to eat food that keeps me healthy
- Q9—I do not avoid foods, even if they may raise my blood glycaemia
- Q10—I avoid foods with genetically modified organisms
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pelletier, J.E.; Graham, D.J.; Laska, M.N. Social Norms and Dietary Behaviors among Young Adults. Am. J. Heal. Behav. 2014, 38, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgs, S. Social norms and their influence on eating behaviors. Appetite 2015, 86, 38–44. [Google Scholar] [CrossRef]
- Lock, K.; Smith, R.D.; Dangour, A.D.; Keogh-Brown, M.; Pigatto, G.; Hawkes, C.; Fisberg, R.M.; Chalabi, Z. Health, agricultural, and economic effects of adoption of healthy diet recommendations. Lancet 2010, 376, 1699–1709. [Google Scholar] [CrossRef]
- Conklin, A.I.; Forouhi, N.G.; Surtees, P.; Khaw, K.-T.; Wareham, N.J.; Monsivais, P. Social relationships and healthful dietary behavior: Evidence from over-50s in the EPIC cohort, UK. Soc. Sci. Med. 2014, 100, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Cornelsen, L.; Green, R.; Turner, R.; Dangour, A.D.; Shankar, B.; Mazzocchi, M.; Smith, R.D. What Happens to Patterns of Food Consumption when Food Prices Change? Evidence from A Systematic Review and Meta-Analysis of Food Price Elasticities Globally. Heal. Econ. 2014, 24, 1548–1559. [Google Scholar] [CrossRef] [PubMed]
- Ferrão, A.C.; Guiné, R.P.; Correia, P.; Ferreira, M.; Duarte, J.; Lima, J. Development of a Questionnaire to Assess People’s Food Choices Determinants. Curr. Nutr. Food Sci. 2019, 15, 281–295. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Ferrão, A.C.; Correia, P.; Cardoso, A.P.; Ferreira, M.; Duarte, J. Influence of emotional determinants on the food choices of the portuguese. EUREKA Soc. Humanit. 2019, 5, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Liang, A.R.-D.; Lim, W.M. Exploring the online buying behavior of specialty food shoppers. Int. J. Hosp. Manag. 2011, 30, 855–865. [Google Scholar] [CrossRef]
- Mayén, A.-L.; De Mestral, C.; Zamora, G.; Paccaud, F.; Marques-Vidal, P.; Bovet, P.; Stringhini, S. Interventions promoting healthy eating as a tool for reducing social inequalities in diet in low- and middle-income countries: A systematic review. Int. J. Equity Heal. 2016, 15, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, A.L.; Schlezinger, J.J.; Corkey, B.E. What Are We Putting in Our Food That Is Making Us Fat? Food Additives, Contaminants, and Other Putative Contributors to Obesity. Curr. Obes. Rep. 2014, 3, 273–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagnese, C.; Santarpia, L.; Buonifacio, M.; Nardelli, A.; Caldara, A.R.; Silvestri, E.; Contaldo, F.; Pasanisi, F. European food-based dietary guidelines: A comparison and update. Nutrition 2015, 31, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; MacKenzie, T.; Ni Mhurchu, C. Indicators of the relative availability of healthy versus unhealthy foods in supermarkets: A validation study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 53. [Google Scholar] [CrossRef] [Green Version]
- Temple, N.J. Front-of-package food labels: A narrative review. Appetite 2020, 144, 104485. [Google Scholar] [CrossRef] [PubMed]
- Bialkova, S.; Sasse, L.; Fenko, A. The role of nutrition labels and advertising claims in altering consumers’ evaluation and choice. Appetite 2016, 96, 38–46. [Google Scholar] [CrossRef]
- Steinhauser, J.; Janssen, M.; Hamm, U. Who Buys Products with Nutrition and Health Claims? A Purchase Simulation with Eye Tracking on the Influence of Consumers’ Nutrition Knowledge and Health Motivation. Nutrients 2019, 11, 2199. [Google Scholar] [CrossRef] [Green Version]
- Waterlander, W.E.; Steenhuis, I.H.; de Boer, M.R.; Schuit, A.J.; Seidell, J.C. Effects of different discount levels on healthy products coupled with a healthy choice label, special offer label or both: Results from a web-based supermarket experiment. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchini, M.; Warin, L. Impact of food labelling systems on food choices and eating behaviors: A systematic review and meta-analysis of randomized studies. Obes. Rev. 2016, 17, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Hammer, B.A.; Vallianatos, H.; Nykiforuk, C.I.J.; Nieuwendyk, L.M. Perceptions of healthy eating in four Alberta communities: A photovoice project. Agric. Hum. Values 2015, 32, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.L.; Bargh, J.A. The relationship between television viewing and unhealthy eating: Implications for children and media interventions. Health Commun. 2009, 24, 660–673. [Google Scholar] [CrossRef] [PubMed]
- Elliston, K.G.; Ferguson, S.G.; Schüz, N.; Schüz, B. Situational cues and momentary food environment predict everyday eating behavior in adults with overweight and obesity. Heal. Psychol. 2017, 36, 337–345. [Google Scholar] [CrossRef]
- Alesin, K.C.; Franklin, B.A.; Miller, W.M.; Peterson, E.D.; McCullough, P.A. Impact of obesity on cardiovascular disease. Endocrinol. Metab. Clin. N. Am. 2008, 37, 663–684. [Google Scholar] [CrossRef]
- American Diabetes Association Addendum. 8. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 42 (Suppl. 1), 81–89. [Google Scholar] [CrossRef]
- Meurling, I.J.; Shea, D.O.; Garvey, J.F. Obesity and sleep: A growing concern. Curr. Opin. Pulm. Med. 2019, 25, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L.; Drummond, P.D. Obesity and psychiatric disorders: Commonalities in dysregulated biological pathways and their implications for treatment. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Bacârea, A.; Bacârea, V.C.; Tarcea, M. The relation between prepregnancy maternal body mass index and total gestational weight gain with the characteristics of the newborns. J. Matern. Neonatal Med. 2020, 1–6. [Google Scholar] [CrossRef]
- Ferrão, A.C.; Correia, P.; Ferreira, M.; Guiné, R.P.F. Perceptions towards healthy diet of the Portuguese according to area of work or studies. Slov. J. Public Heal. 2019, 58, 40–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusk, J.L. Consumer beliefs about healthy foods and diets. PLoS ONE 2019, 14, e0223098. [Google Scholar] [CrossRef] [Green Version]
- Marusteri, M.; Bacârea, V. Comparing groups for statistical differences: How to choose the right statistical test? Biochem. Medica 2010, 20, 15–32. [Google Scholar] [CrossRef]
- Marôco, J. Análise Estatística com o SPSS Statistics, 7th ed.; Report Number: Lisbon, Portugal, 2018. [Google Scholar]
- Cînpeanu, O.-C.; Tarcea, M.; Cojan, P.; Iorga, D.; Olah, P.; Guiné, R.P. Perception of Healthy Eating among Romanian Adults. J. Interdiscip. Med. 2019, 4, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Cecchini, M.; Sassi, F.; Lauer, J.A.; Lee, Y.Y.; Guajardo-Barron, V.; Chisholm, D. Tackling of unhealthy diets, physical inactivity, and obesity: Health effects and cost-effectiveness. Lancet 2010, 376, 1775–1784. [Google Scholar] [CrossRef]
- Bacârea, A.; Tarcea, M.; Boţianu, P.V.H.; Ruţă, F.; Bacârea, V. Age cut-off for type 2 diabetes mellitus screening amongst young adults from Mures District, Romania—A pilot study. Obes. Res. Clin. Pr. 2015, 9, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Abdella, H.M.; El Farssi, H.O.; Broom, D.R.; Hadden, D.A.; Dalton, C.F. Eating Behaviors and Food Cravings; Influence of Age, Sex, BMI and FTO Genotype. Nutrition 2019, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Moyá, M.; Navarrete-Muñoz, E.M.; García de la Hera, M.; Giménez-Monzo, D.; González-Palacios, S.; Valera-Gran, D.; Sempere-Orts, M.; Vioque, J. Asociación entre horas de televisión, actividad física, horas de sueño y exceso de peso en población adulta joven [Association between hours of television watched, physical activity, sleep and excess weight among young adults]. Gac Sanit. 2014, 28, 203–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J. Joint Association of Screen Time and Physical Activity with Obesity: Findings from the Korea Media Panel Study. Osong Public Heal. Res. Perspect. 2018, 9, 207–212. [Google Scholar] [CrossRef]
- Patel, V.C.; Spaeth, A.M.; Basner, M. Relationships between time use and obesity in a representative sample of Americans. Obesity 2016, 24, 2164–2175. [Google Scholar] [CrossRef] [Green Version]
- Golshevsky, D.M.; Magnussen, C.; Juonala, M.; Kao, K.-T.; Harcourt, B.E.; Sabin, M.A. Time spent watching television impacts on body mass index in youth with obesity, but only in those with shortest sleep duration. J. Paediatr. Child. Heal. 2019, 56, 721–726. [Google Scholar] [CrossRef]
- Sánchez, C.N.; Maddalena, N.; Penalba, M.; Quarleri, M.; Torres, V.; Wachs, A. Relación entre nivel de instrucción y exceso de peso en pacientes de consulta externa. Estudio transversal [Relationship between level of education and overweight in outpatients. A transversal study]. Medicina [B Aires] 2017, 77, 291–296. [Google Scholar] [PubMed]
- Boing, A.F.; Subramanian, S.V. The influence of area-level education on body mass index, waist circumference and obesity according to gender. Int. J. Public Heal. 2015, 60, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Gao, W.; Cao, W.; Lv, J.; Yu, C.; Wang, S.; Li, C.; Pang, Z.; Cong, L.; Dong, Z.; et al. Association of Educational Level and Marital Status With Obesity: A Study of Chinese Twins. Twin Res. Hum. Genet. 2018, 21, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Klos, L.A.; Sobal, J. Marital status and body weight, weight perception, and weight management among U.S. adults. Eat. Behav. 2013, 14, 500–507. [Google Scholar] [CrossRef]
- Kinge, J.M. Body mass index and employment status: A new look. Econ. Hum. Biol. 2016, 22, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Feigl, A.B.; Goryakin, Y.; Devaux, M.; Lerouge, A.; Vuik, S.; Cecchini, M. The short-term effect of BMI, alcohol use, and related chronic conditions on labour market outcomes: A time-lag panel analysis utilizing European SHARE dataset. PLoS ONE 2019, 14, e0211940. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, M.; Gwam, C.U.; Mohamed, N.; Khlopas, A.; Sodhi, N.; Sultan, A.A.; Bhave, A.; Mont, M.A. Impact of Physical Activity and Body Mass Index in Cardiovascular and Musculoskeletal Health: A Review. Surg. Technol. Int. 2017, 31, 213–220. [Google Scholar] [PubMed]
- Mainous, A.G., 3rd; Tanner, R.J.; Anton, S.D.; Jo, A.; Luetke, M.C. Physical Activity and Abnormal Blood Glucose Among Healthy Weight Adults. Am. J. Prev. Med. 2017, 53, 42–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carraça, E.V.; MacKenbach, J.D.; Lakerveld, J.; Rutter, H.; Oppert, J.-M.; De Bourdeaudhuij, I.; Compernolle, S.; Roda, C.; Bárdos, H.; Teixeira, P.J. Lack of interest in physical activity—Individual and environmental attributes in adults across Europe: The SPOTLIGHT project. Prev. Med. 2018, 111, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ashton, L.M.; Hutchesson, M.J.; Rollo, M.E.; Morgan, P.J.; Collins, C.E. Motivators and Barriers to Engaging in Healthy Eating and Physical Activity. Am. J. Mens. Health 2017, 11, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. “Part 101 –Food Labeling, Subpart D—Specific Requirements for Nutrient Content Claims.” Code of Federal Regulation. Title 21, Volume 2, Chapter 1, Subchapter B, Part 101, Subpart, D. 21CFR101.65. 1 April 2018. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.65 (accessed on 5 February 2021).
- Shepherd, R. Resistance to Changes in Diet. In Proceedings of the Nutrition Society; CABI Publishing: Wallingford, UK, 2002; Volume 61, pp. 267–272. [Google Scholar]
- van der Velde, L.A.; Schuilenburg, L.A.; Thrivikraman, J.K.; Numans, M.E.; Kiefte-de Jong, J.C. Needs and perceptions regarding healthy eating among people at risk of food insecurity: A qualitative analysis. Int. J. Equity Health 2019, 18, 184. [Google Scholar] [CrossRef] [PubMed]
- Mete, R.; Shield, A.; Murray, K.; Bacon, R.; Kellett, J. What is healthy eating? A qualitative exploration. Public Heal. Nutr. 2019, 22, 2408–2418. [Google Scholar] [CrossRef]
- Wunderlich, S.M.; Gatto, K.A. Consumer Perception of Genetically Modified Organisms and Sources of Information. Adv. Nutr. 2015, 6, 842–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitelock, E.; Ensaff, H. On Your Own: Older Adults’ Food Choice and Dietary Habits. Nutrition 2018, 10, 413. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Torkamani, P.; Sohrabi, Z.; Ghahremani, F. Nutrition knowledge: Application and perception of food labels among women. Pak. J. Biol. Sci. 2013, 16, 2026–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putnoky, S.; Banu, A.M.; Moleriu, L.C.; Putnoky, S.; Șerban, D.M.; Niculescu, M.D.; Șerban, C.L. Reliability and validity of a General Nutrition Knowledge Questionnaire for adults in a Romanian population. Eur. J. Clin. Nutr. 2020, 74, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Blomster, J.; Zoungas, S.; Woodward, M.; Neal, B.; Harrap, S.; Poulter, N.; Marre, M.; Williams, B.; Chalmers, J.; Hillis, G. The impact of level of education on vascular events and mortality in patients with type 2 diabetes mellitus: Results from the ADVANCE study. Diabetes Res. Clin. Pr. 2017, 127, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lotrean, L.M.; Stan, O.; Codruta, L.; Laza, V. Dietary patterns, physical activity, body mass index, weight-related behaviors and their interrelationship among Romanian university students-trends from 2003 to 2016. Nutr. Hosp. 2018, 35, 375–383. [Google Scholar]
- Nagata, J.M.; Garber, A.K.; Tabler, J.; Murray, S.B.; Vittinghoff, E.; Bibbins-Domingo, K. Disordered eating behaviors and cardiometabolic risk among young adults with overweight or obesity. Int. J. Eat. Disord. 2018, 51, 931–941. [Google Scholar] [CrossRef]
- Liu, A.G.; Ford, N.A.; Hu, F.B.; Zelman, K.M.; Mozaffarian, D.; Kris-Etherton, P.M. A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutr. J. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Azairs-Braesco, V.; Sluik, D.; Maillot, M.; Kok, F.; Moreno, L.A. A review of total & added sugar intakes and dietary sources in Europe. Nutr. J. 2017, 16, 6. [Google Scholar]
- Ha, S.K. Dietary Salt Intake and Hypertension. Electrolytes Blood Press. 2014, 12, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Bowen, K.J.; Sullivan, V.K.; Kris-Etherton, P.M.; Petersen, K.S. Nutrition and Cardiovascular Disease—an Update. Curr. Atheroscler. Rep. 2018, 20, 8. [Google Scholar] [CrossRef]
Parameter | N (1) | (%) |
---|---|---|
Age (years) | 751 | 100% |
18–29 | 260 | 34.62% |
30–39 | 128 | 17.04% |
40–49 | 187 | 24.90% |
50–59 | 132 | 17.58% |
≥60 | 44 | 5.86% |
Gender | ||
Female | 511 | 68.04% |
Male | 240 | 31.96% |
Education | ||
General school | 3 | 0.40% |
High school | 167 | 22.24% |
College | 581 | 77.36% |
Environment | ||
Urban | 623 | 82.96% |
Suburban | 26 | 3.46% |
Rural | 102 | 13.52% |
Marital status | ||
Single | 211 | 28.10% |
Married/living together | 480 | 63.91% |
Divorced/separated | 50 | 6.66% |
Widow | 10 | 1.33% |
Employee status | ||
Employed | 542 | 72.17% |
Unemployed | 31 | 4.13% |
Retired | 29 | 3.86% |
Working student | 149 | 19.84% |
Professional area | ||
Nutrition | 97 | 12.92% |
Food | 48 | 6.39% |
Agriculture | 13 | 1.73% |
Sports | 33 | 4.39% |
Psychology | 35 | 4.66% |
Health-related activities | 332 | 44.21% |
Professional activity is not related to any of the above areas | 269 | 35.82% |
You are responsible for what you eat | ||
Yes | 699 | 93.08% |
No | 52 | 6.92% |
Physical activity | ||
Never | 52 | 6.92% |
Sporadic (<1 time/week) | 253 | 33.69% |
Occasionally (1 time/week) | 229 | 30.49% |
Moderate (2–3 times/week) | 170 | 22.64 |
Intense (>3 times/week) | 47 | 6.29% |
How often do you think you are on a healthy/balanced diet? | ||
Never | 55 | 7.32% |
Rarely | 118 | 15.71% |
Sometimes | 203 | 27.03% |
Frequently | 343 | 45.67% |
Always | 32 | 4.26% |
Chronic diseases | ||
Cardiovascular disease | 27 | 3.60% |
Diabetes mellitus | 25 | 3.33% |
High cholesterol | 47 | 6.26% |
High blood pressure | 47 | 6.26% |
Gastric disorders | 41 | 5.46% |
Intestinal disorders | 21 | 2.80% |
Obesity | 50 | 6.66% |
Other chronic diseases | 32 | 4.26% |
Parameter (N (1) = 751) | Age (years) Mean ± SD Min, Max | BMI (2) (kg/m2) Mean ± SD Min, Max | P Value (3) |
---|---|---|---|
Age (years) | 38.02 ± 13.42 18, 80 | 24.60 ± 4.34 15.05, 43.57 | p < 0.0001 (4) r (5) = 0.3948 |
18–29 | 23.18 ± 3.27 | 22.58 ± 3.67 16.13, 34.47 | |
30–39 | 34.38 ± 2.79 | 24.15 ± 3.93 15.05, 40.81 | |
40–49 | 44.28 ± 2.86 | 25.85 ± 4.38 17.82, 43.57 | |
50–59 | 52.78 ±2.71 | 26.75 ± 4.38 19.19, 40.40 | |
≥ 60 | 65.38 ± 4.75 | 25.88 ± 3.60 18.36, 38.6 | |
Gender | |||
Female | 36.60 ± 12.80 18, 80 | 23.97 ± 4.43 15.05, 43.57 | p < 0.0001 (6) r (7) = 0.4223 |
Male | 41.04 ± 14.21 18, 80 | 25.91 ± 3.85 16.48, 40.81 | p = 0.0061 (6) r (7) = 0.1765 |
General school | 22 ± 3.46 18, 24 | 19.24 ± 0.89 18.28, 20.07 | NA (8) |
High school | 29.83 ± 12.71 18, 69 | 23.80 ± 3.90 17.14, 39.06 | t(746) = 2.792 p = 0.0054 (9) |
College | 40.46 ± 12.65 21, 80 | 24.85 ± 4.44 15.05, 43.57 | |
Environment | H(3) = 3.503 p = 0.1735 (10) | ||
Urban | 38.49 ± 12.94 18, 80 | 24.65 ± 4.34 15.05, 43.57 | |
Suburban | 38.61 ± 16.31 18, 77 | 25.36 ± 4.35 18.42, 35.15 | |
Rural | 35.00 ± 15.16 18, 69 | 24.00 ± 4.34 17.00, 40.40 | |
Marital status | H(4) = 39.360 p < 0.0001 (10) | ||
Single | 26.72 ± 9.79 18, 65 | 23.18 ± 4.05 15.05, 37.20 | |
Married/living together | 41.44 ± 12.01 18, 80 | 25.21 ± 4.39 16.13, 43.57 | |
Divorced/separated | 48.86 ± 7.81 27, 69 | 24.57 ± 4.06 18.06, 39.97 | |
Widow | 58.20 ± 6.76 42, 64 | 24.93 ± 2.31 22.32, 30.29 | |
Employee status | F(2, 599) = 0.026 p = 0.9734 (11) | ||
Employed | 41.39 ± 10.66 19, 77 | 25.19 ± 4.38 15.05, 43.57 | |
Unemployed | 33.41 ± 10.11 21, 55 | 25.07 ± 4.62 16.40, 35.23 | |
Retired | 64.20 ± 7.46 50, 80 | 25.28 ± 3.37 18.36, 35, 41 | |
Working student | 21.61 ± 3.84 18, 47 | 22.19 ± 3.44 17.10, 33.56 | |
Professional area | H(7) = 25.67 p = 0.0003 (10) | ||
Nutrition | 30.14 ± 11.36 19, 55 | 23.23 ± 3.72 17.09, 37.20 | |
Food | 34.16 ± 13.44 19, 77 | 24.23 ± 5.15 17.04, 35.23 | |
Agriculture | 37.77 ± 17.81 20, 77 | 28.62 ± 6.13 18.36, 39.06 | |
Sports | 30.18 ± 9.93 18, 52 | 23.74 ± 2.67 18.33, 29.45 | |
Psychology | 35.80 ± 14.27 19, 69 | 23.22 ± 3.91 17.10, 37.63 | |
Health-related activities | 40.58 ± 12.68 18, 80 | 24.97 ± 4.14 17.00, 43.57 | |
Professional activity is not related to any of the above areas | 38.23 ± 13.66 18, 74 | 24.61 ± 4.54 15.05, 40.81 | |
You are responsible for what you eat | U = 16,780 p = 0.3430 (12) | ||
Yes | 37.97 ± 13.36 18, 80 | 24.56 ± 4.36 15.05, 43.57 | |
No | 38.63 ± 14.34 18, 66 | 25.01 ± 4.07 17.10, 35.23 | |
Physical activity | H(4) = 6.0958 p = 0.1921 (10) | ||
Never | 39.00 ± 11.33 21, 63 | 23.90 ± 4.69 16.40, 40.81 | |
Sporadic (<1 time/week) | 40.57 ± 12.89 18, 69 | 25.10 ± 4.65 16.13, 43.57 | |
Occasionally (1 time/week) | 36.35 ± 13.92 18, 80 | 24.57 ± 4.42 15.05, 39.06 | |
Moderate (2–3 times/week) | 36.75 ± 13.50 18, 74 | 24.11 ± 3.79 17.00, 37.24 | |
Intense (>3 times/week) | 35.93 ± 13.92 19, 80 | 24.39 ± 3.51 18.33, 32.43 | |
Hours/day spent watching TV or in front of the computer | 4.81 ± 3.17 2, 20 | p < 0.0001 (4) rx (5) = 0.1540 p = 0.001 (4) ry (5) = 0.1202 | |
How often do you think you are on a healthy/balanced diet? | H(4) = 19.166 p = 0.0007 (10) | ||
Never | 37.47 ± 12.14 18, 58 | 25.03 ± 4.34 16.90, 40.40 | |
Rarely | 37.91 ± 13.18 18, 77 | 25.77 ± 5.48 16.40, 43.57 | |
Sometimes | 35.20 ± 12.18 18, 65 | 25.04 ± 4.36 17.04, 39.06 | |
Frequently | 39.81 ± 13.85 18, 74 | 24.07 ± 3.79 16.13, 37.20 | |
Always | 38.03 ± 16.58 19, 80 | 22.26 ± 3.46 15.05, 29.21 | |
Chronic disease | N.P. (12) | ||
Cardiovascular disease | 57.25 ± 12.15 32, 80 | 26.12 ± 4.53 18.36, 37.24 | |
Diabetes mellitus | 45.40 ± 13.51 20, 64 | 28.54 ± 5.46 20.76, 40.40 | |
High cholesterol | 51.72 ± 12.26 24, 77 | 27.17 ± 4.57 20.06, 37.63 | |
High blood pressure | 48.82 ± 15.29 19, 80 | 28.52 ± 5.43 19.19, 43.57 | |
Gastric disorders | 38.00 ± 13.68 19, 64 | 24.97 ± 5.02 15.05, 35.05 | |
Intestinal disorders | 39.71 ± 13.65 19, 61 | 23.90 ± 3.97 16.48, 31.23 | |
Obesity | 43.60 ± 12.91 19, 77 | 32.30 ± 4.17 29.74, 43.57 | |
Other chronic diseases | 41.43 ± 11.31 19, 65 | 24.87 ± 4.24 15.05, 35.23 |
Question | 1 n (%) | 2 n (%) | 3 n (%) | 4 n (%) | 5 n (%) |
---|---|---|---|---|---|
Q1 | 6 (0.80%) | 20 (2.66%) | 123 (16.38%) | 300 (39.95%) | 302 (40.21%) |
Q2 | 28 (3.73%) | 125 (16.64%) | 274 (36.48%) | 188 (25.03%) | 136 (18.11%) |
Q3 | 9 (1.20%) | 49 (6.52%) | 174 (23.17%) | 333 (44.34%) | 186 (24.77%) |
Q4 | 8 (1.07%) | 22 (2.93%) | 160 (21.30%) | 290 (38.62%) | 271 (36.09%) |
Q5 | 53 (7.06%) | 125 (16.64%) | 186 (24.77%) | 257 (34.22%) | 130 (17.31%) |
Q6 | 16 (2.13%) | 46 (6.13%) | 181 (24.10%) | 361 (48.07%) | 147 (19.57%) |
Q7 | 22 (2.93%) | 147 (19.57) | 212 (28.23%) | 251 (33.42%) | 119 (15.85%) |
Q8 | 6 (0.80%) | 19 (2.53%) | 100 (13.32%) | 286 (38.08%) | 340 (45.27%) |
Q9 | 54 (7.19%) | 188 (25.03%) | 197 (26.23%) | 259 (34.49%) | 53 (7.06%) |
Q10 | 45 (5.99%) | 65 (8.66%) | 188 (25.03%) | 189 (25.17%) | 264 (35.15%) |
Item | Q1 | Q6 | Q10 |
---|---|---|---|
Q1 | 1.000 | ||
Q6 | 0.434 ** | 1.000 | |
Q10 | 0.410 ** | 0.430 ** | 1.000 |
Item | Q2 | Q4 | Q5R (2) | Q7 | Q8 | Q9R (3) |
---|---|---|---|---|---|---|
Q2 | 1.000 | |||||
Q4 | 0.357 ** | 1.000 | ||||
Q5R(2) | −0.251 ** | −0.182 ** | 1.000 | |||
Q7 | −0.021 | 0.230 ** | 0.255 ** | 1.000 | ||
Q8 | 0.341 ** | 0.656 ** | −0.133 ** | 0.320 ** | 1.000 | |
Q9R(3) | 0.150 ** | 0.108 ** | 0.259 ** | 0.040 | 0.144 ** | 1.000 |
Parameter | Food Properties | Health Attitudes | Dietary Behavior |
---|---|---|---|
Age (2) | X2(16, N = 751) = 26.03 p = 0.0535 | X2(16, N = 751) = 26.60 p = 0.0353 | X2(16, N = 751) = 28.57 p = 0.0270 |
Gender (2) | X2(4, N = 751) = 2.8726 p = 0.5794 | X2(4, N = 751) = 11.07 p = 0.0258 | X2(4, N = 751) = 13.47 p = 0.0092 |
Environment (2) | X2(8, N = 751) = 13.05 p = 0.1099 | X2(8, N = 751) = 13.08 p = 0.109 | X2(8, N = 751) = 15.53 p = 0.0496 |
Education level (2) | X2 (8, N = 751) = 4.42 p = 0.8174 | X2(8, N = 751) = 16.18 p = 0.0399 | X2(8, N = 751) = 33.89 p = 0.0000 |
BMI (3) | r = 0.0261 p = 0.4738 | r = 0.0683 p = 0.0612 | r = −0.0038 p = 0.292 |
Physical activity (2) | X2 (16, N = 751) = 43.27 p = 0.0003 | X2 (16, N = 751) = 33.13 p = 0.0071 | X2 (16, N = 751) = 52.06 p = 0.0000 |
Hours/day watching TV/PC (3) | r = −0.0337 p = 0.3551 | r = 0.0901 p = 0.0134 | r = 0.0230 p = 0.5291 |
Cardiovascular disease (2) | X2 (4, N = 751) = 4.14 p = 0.3869 | X2 (4, N = 751) = 15.01 p = 0.0047 | X2(4, N = 751) = 6.84 p = 0.1445 |
Diabetes mellitus (2) | X2 (4, N = 751) = 2.40 p = 0.6618 | X2 (4, N = 751) = 2.55 p = 0.6345 | X2 (4, N = 751) = 0.86 p = 0.9300 |
High cholesterol (2) | X2 (4, N = 751) = 0.67 p = 0.9546 | X2 (4, N = 751) = 4.59 p = 0.3315 | X2 (4, N = 751) = 1.37 p = 0.8488 |
High blood pressure (2) | X2 (4, N = 751) = 5.56 p = 0.2340 | X2 (4, N = 751) = 3.86 p = 0.4240 | X2 (4, N = 751) = 2.96 p = 0.5632 |
Gastric disorders (2) | X2 (4, N = 751) = 13.85 p = 0.0078 | X2 (4, N = 751) = 11.85 p = 0.0185 | X2 (4, N = 751) = 16.15 p = 0.0028 |
Intestinal disorders (2) | X2 (4, N = 751) = 9.95 p = 0.0411 | X2 (4, N = 751) = 6.98 p = 0.1366 | X2 (4, N = 751) = 8.01 p = 0.0911 |
Obesity (2) | X2 (4, N = 751) = 3.09 p = 0.5416 | X2 (4, N = 751) = 4.45 p = 0.3485 | X2 (4, N = 751) = 26.47 p = 0.0000 |
Other (2) | X2 (4, N = 751) = 3.86 p = 0.4240 | X2 (4, N = 751) = 6.90 p = 0.4100 | X2 (4, N = 751) = 10.85 p = 0.8863 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacârea, A.; Bacârea, V.C.; Cînpeanu, C.; Teodorescu, C.; Seni, A.G.; Guiné, R.P.F.; Tarcea, M. Demographic, Anthropometric and Food Behavior Data towards Healthy Eating in Romania. Foods 2021, 10, 487. https://doi.org/10.3390/foods10030487
Bacârea A, Bacârea VC, Cînpeanu C, Teodorescu C, Seni AG, Guiné RPF, Tarcea M. Demographic, Anthropometric and Food Behavior Data towards Healthy Eating in Romania. Foods. 2021; 10(3):487. https://doi.org/10.3390/foods10030487
Chicago/Turabian StyleBacârea, Anca, Vladimir Constantin Bacârea, Cristina Cînpeanu, Claudiu Teodorescu, Ana Gabriela Seni, Raquel P. F. Guiné, and Monica Tarcea. 2021. "Demographic, Anthropometric and Food Behavior Data towards Healthy Eating in Romania" Foods 10, no. 3: 487. https://doi.org/10.3390/foods10030487
APA StyleBacârea, A., Bacârea, V. C., Cînpeanu, C., Teodorescu, C., Seni, A. G., Guiné, R. P. F., & Tarcea, M. (2021). Demographic, Anthropometric and Food Behavior Data towards Healthy Eating in Romania. Foods, 10(3), 487. https://doi.org/10.3390/foods10030487