Elemental and Speciation Analyses of Different Brands of Yerba Mate (Ilex paraguariensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collecting
2.2. Gases and Reagents
2.3. Sample Preparation
2.4. Arsenic Speciation Studies Using HPLC-HG-ICP OES
2.5. Iron Speciation Studies Using HPLC-ICP OES
2.6. ICP OES Determination of Selected Elements Content
2.7. Statistical Analysis
3. Results and Discussion
3.1. As and Fe Speciation Studies
3.2. Total and Extractable Content of Selected Elements
3.3. Spearman’s Rank Correlation Test
3.4. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pardinho, R.; Vecchia, P.D.; Mendes, A.; Bizzi, C.; Mello, P.; Duarte, F.; Flores, E. Determination of toxic elements in yerba mate by ICP-MS after diluted acid digestion under O2 pressure. Food Chem. 2018, 263, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, E., Jr.; Morand, C. Interest of mate (Ilex paraguariensis A. St.–Hil.) as a new natural functional food to preserve human cardiovascular health—A review. J. Funct. Foods 2016, 21, 440–454. [Google Scholar] [CrossRef]
- Bastos, M.C.; Cherobim, V.; Reissmann, C.; Kaseker, J.F.; Gaiad, S. Yerba mate: Nutrient levels and quality of the beverage depending on the harvest season. J. Food Compost. Anal. 2018, 69, 1–6. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C.; Schat, H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 2009, 12, 364–372. [Google Scholar] [CrossRef]
- Schmite, B.; Bitobrovec, A.; Hacke, A.; Pereira, R.; Weinert, P.; dos Anjos, V. In vitro bioaccessibility of Al, Cu, Cd, and Pb following simulated gastro–intestinal digestion and total content of these metals in different Brazilian brands of yerba mate tea. Food Chem. 2019, 281, 285–293. [Google Scholar] [CrossRef]
- Carelton, J. Final Report: Biogeochemistry of Arsenic in Contaminated Soils of Superfund Sites; Environmental Protection Agency: Washington, DC, USA, 2007.
- Wolle, M.; Conklin, S.; Wittenberg, J. Matrix–Induced transformation of arsenic species in seafoods. Anal. Chim. Acta 2019, 1060, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Sabio, L.; Gálvez, N.; Capdevila, M.; Dominguez-Vera, J. Iron chemistry at the service of life. IUBMB Life 2017, 69, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Podwika, W.; Kleszcz, K.; Krośniak, M.; Zagrodzki, P. Copper, Manganese, Zinc, and Cadmium in Tea Leaves of Different Types and Origin. Biol. Trace Elem. Res. 2017, 183, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, J.; Motta, A.; Consalter, R.; Poggere, G.; Santin, D.; Wendling, I. Plant growth, nutrients and potentially toxic elements in leaves of yerba mate clones in response to phosphorus in acid soils. An. Acad. Bras. Cienc. 2018, 90, 557–571. [Google Scholar] [CrossRef]
- Marcelo, M.; Martins, C.; Pozebon, D.; Dressler, V.; Ferrão, M. Classification of yerba mate (Ilex paraguariensis) according to the country of origin based on element concentrations. Microchem. J. 2014, 117, 164–171. [Google Scholar] [CrossRef]
- Proch, J.; Niedzielski, P. In–spray chamber hydride generation by multi–mode sample introduction system (MSIS) as an interface in the hyphenated system of high performance liquid chromatography and inductivity coupled plasma optical emission spectrometry (HPLC/HG-ICP-OES) in arsenic species determination. Talanta 2019, 208, 120395. [Google Scholar] [CrossRef]
- Proch, J.; Niedzielski, P. Iron species determination by high performance liquid chromatography with plasma based optical emission detectors: HPLC-MIP OES and HPLC-ICP OES. Talanta 2021, 231, 122403. [Google Scholar] [CrossRef]
- Escudero, L.; Pacheco, P.; Gasquez, J.; Salonia, J. Development of a FI-HG-ICP-OES solid phase preconcentration system for inorganic selenium speciation in Argentinean beverages. Food Chem. 2015, 169, 73–79. [Google Scholar] [CrossRef]
- Pereira, C.; Souza, A.; Oreste, E.; Cidade, M.; Cadore, S.; Ribeiro, A.; Vieira, M. Acid Decomposition of Yerba Mate (Ilex paraguariensis) Using a Reflux System for the Evaluation of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn Contents by Atomic Spectrometric Techniques. J. Braz. Chem. Soc. 2016, 27, 685–693. [Google Scholar] [CrossRef]
- Borges, A.; Bazanella, D.; Duarte, Á.; Zmozinski, A.; Vale, M.; Welz, B. Development of a method for the sequential determination of cadmium and chromium from the same sample aliquot of yerba mate using high–resolution continuum source graphite furnace atomic absorption spectrometry. Microchem. J. 2017, 130, 116–121. [Google Scholar] [CrossRef]
- Proch, J.; Niedzielski, P. Multi–mode Sample Introduction System (MSIS) as an interface in the hyphenated system 2 HPLC-MSIS-ICP–OES in simultaneous determination of metals and metalloids species. Anal. Chim. Acta 2021, 1147, 1–14. [Google Scholar] [CrossRef]
- Schunk, P.; Kalil, I.; Pimentel–Schmitt, E.; Lenz, D.; de Andrade, T.; Ribeiro, J.; Endringer, D. ICP-OES and Micronucleus Test to Evaluate Heavy Metal Contamination in Commercially Available Brazilian Herbal Teas. Biol. Trace Elem. Res. 2015, 172, 258–265. [Google Scholar] [CrossRef]
- Santos, L.; Neto, S.V.; Iozzi, G.; Jacob, S. Arsenic, cadmium and lead concentrations in Yerba mate commercialized in Southern Brazil by inductively coupled plasma mass spectrometry. Cienc. Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Pozebon, D.; Dressler, V.; Marcelo, M.; de Oliveira, T.; Ferrão, M. Toxic and nutrient elements in yerba mate (Ilex paraguariensis). Food Addit. Contam. B 2015, 8, 215–220. [Google Scholar] [CrossRef]
- ANVISA. Regulamento Técnico Mercosul Sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos (REVOGAÇÃO DAS RES. GMC N° 102/94 e N°35/96); Mercosul, Ed.; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2013; pp. 1–18.
- Ulbrich, N.; do Prado, L.; Barbosa, J.; Araujo, E.; Poggere, G.; Motta, A.; Prior, S.; Magri, E.; Young, S.; Broadley, M. Multi–elemental Analysis and Health Risk Assessment of Commercial Yerba Mate from Brazil. Biol. Trace Elem. Res. 2021, 1–9. [Google Scholar] [CrossRef]
- Olivari, I.; Paz, S.; Gutiérrez, Á.; González–Weller, D.; Hardisson, A.; Sagratini, G.; Rubio, C. Macroelement, trace element, and toxic metal levels in leaves and infusions of yerba mate (Ilex paraguariensis). Environ. Sci. Pollut. Res. 2020, 27, 21341–21352. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, A.G.; Nogami, E.; Visentainer, J.; de Souza, N.; Garcia, E. Fractionation of Aluminum in Commercial Green and Roasted Yerba Mate Samples (Ilex paraguariensis St. Hil.) and in Their Infusions. J. Agric. Food Chem. 2009, 57, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Gruszecka–Kosowska, A.; Kołton, A.; Jasiewicz, C.; Piwowar, P. Content and health risk assessment of selected elements in the Yerba mate (Ilex paraguariensis, St. hillaire). Hum. Ecol. Risk Assess. Int. J. 2017, 24, 1092–1114. [Google Scholar] [CrossRef]
- Motta, A.; Barbosa, J.; Magri, E.; Pedreira, G.; Santin, D.; Prior, S.; Consalter, R.; Young, S.; Broadley, M.; Benedetti, E. Elemental composition of yerba mate (Ilex paraguariensis A.St.–Hil.) under low input systems of southern Brazil. Sci. Total Environ. 2020, 736, 139637. [Google Scholar] [CrossRef]
- Magri, E.; Valduga, A.; Gonçalves, I.; Barbosa, J.; Rabel, D.; Menezes, I.; Nascimento, P.; Oliveira, A.; Corrêa, R.; Motta, A. Cadmium and lead concentrations in yerba mate leaves from agroforestry and plantation systems: An international survey in South America. J. Food Compost. Anal. 2021, 96, 103702. [Google Scholar] [CrossRef]
- Bragança, V.; Melnikov, P.; Zanoni, L. Trace Elements in Different Brands of Yerba Mate Tea. Biol. Trace Elem. Res. 2011, 144, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Product Code | Country of Origin | Type (Kind) | Additives | Packing Type (Weight) |
---|---|---|---|---|---|
1 | A1 | Argentina | Con palo | – | a pack (500 g) |
2 | A1 | Argentina | Con palo | – | a test sample (50 g) |
3 | A2 | Argentina | Con palo | – | a test sample (50 g) |
4 | A3 | Argentina | Despalada | – | a pack (500 g) |
5 | A4 | Argentina | Con palo | – | a pack (500 g) |
6 | A5 | Argentina | Despalada | – | a pack (500 g) |
7 | B1 | Paraguay * | Con palo | – | a test sample (50 g) |
8 | B2 | Paraguay * | Con palo | – | a test sample (50 g) |
9 | B3 | Paraguay * | Con palo | aromas | a test sample (50 g) |
10 | B4 | Paraguay * | Despalada | – | a test sample (50 g) |
11 | B5 | Paraguay * | Con palo | aromas | a pack (500 g) |
12 | B5 | Paraguay * | Con palo | aromas | a test sample (50 g) |
13 | B6 | Paraguay * | Con palo | herbs | a test sample (50 g) |
14 | B7 | Paraguay * | Con palo | herbs | a pack (500 g) |
15 | B7 | Paraguay * | Con palo | herbs | a test sample (50 g) |
16 | C1 | Brazil * | Despalada | – | a test sample (50 g) |
17 | C2 | Brazil * | Despalada | fruits, aromas | a test sample (50 g) |
18 | C3 | Brazil * | Despalada | fruits, herbs, aromas | a test sample (50 g) |
19 | C4 | Brazil * | Despalada | fruits, flowers, herbs | a test sample (50 g) |
20 | C5 | Brazil * | Despalada | herbs, fruits, aromas | a test sample (50 g) |
21 | C6 | Brazil * | Despalada | flowers, herbs, seeds, aromas | a test sample (50 g) |
22 | C7 | Brazil * | Despalada | fruits, flowers, aromas | a test sample (50 g) |
23 | C8 | Brazil * | Despalada | fruits, aromas | a test sample (50 g) |
24 | C9 | Brazil * | Despalada | herbs, fruits, aromas | a test sample (50 g) |
25 | C10 | Brazil * | Despalada | herbs, fruit skin, aromas | a test sample (50 g) |
26 | C11 | Brazil * | Despalada | fruit skin, herbs, aromas | a test sample (50 g) |
27 | C12 | Brazil * | Despalada | fruits, flowers, aromas | a test sample (50 g) |
28 | D1 | Paraguay | Con palo | – | a pack (500 g) |
29 | D1 | Paraguay | Con palo | – | a test sample (50 g) |
30 | D2 | Paraguay | Con palo | – | a pack (500 g) |
31 | D2 | Paraguay | Con palo | – | a test sample (50 g) |
32 | D3 | Paraguay | Con palo | aromas | a pack (500 g) |
33 | D3 | Paraguay | Con palo | aromas | a test sample (50 g) |
34 | D4 | Paraguay | Con palo | herbs | a pack (500 g) |
35 | D4 | Paraguay | Con palo | herbs | a test sample (50 g) |
36 | E1 | Brazil * | Despalada | – | a test sample (50 g) |
37 | E2 | Brazil * | Despalada | fruits, herbs, flowers, aromas | a test sample (50 g) |
38 | E3 | Brazil * | Despalada | herbs, fruit skin, aromas | a test sample (50 g) |
39 | E4 | Brazil * | Despalada | fruits, aromas | a test sample (50 g) |
40 | E5 | Brazil * | Despalada | herbs, fruits, aromas | a test sample (50 g) |
41 | E6 | Brazil * | Despalada | fruits, herbs, aromas | a test sample (50 g) |
42 | E7 | Brazil * | Despalada | fruit skin, aromas | a test sample (50 g) |
43 | E8 | Brazil * | Despalada | fruits, herbs, flowers, aromas | a test sample (50 g) |
44 | E9 | Brazil * | Despalada | fruits, flowers, aromas | a test sample (50 g) |
45 | E10 | Brazil * | Despalada | herbs, flowers, aromas | a test sample (50 g) |
46 | F1 | Argentina | Con palo | – | a pack (500 g) |
47 | F2 | Argentina | Con palo | – | a pack (500 g) |
48 | F3 | Argentina | Con palo | – | a pack (500 g) |
49 | F3 | Argentina | Con palo | – | a test sample (50 g) |
50 | G1 | Argentina | Con palo | – | a test sample (50 g) |
51 | H1 | Argentina | Con palo | – | a test sample (50 g) |
52 | H1 | Argentina | Con palo | – | a pack (500 g) |
53 | H2 | Argentina | Con palo | aromas | a test sample (50 g) |
54 | I1 | Paraguay | Con palo | – | a test sample (50 g) |
55 | J1 | N/D * | N/D | fruits, flowers, herbs | a weighted pack (100 g) |
56 | K1 | Brazil | Despalada | – | a test sample (50 g) |
57 | L1 | Argentina | Con palo | herbs, aromas | a pack (500 g) |
58 | M1 | N/D * | N/D | fruit skin, fruits | a weighted pack (100 g) |
HPLC-HG-ICP OES | HPLC-ICP OES | ICP OES | |
---|---|---|---|
HPLC conditions | |||
Pump | Shimadzu LC-10AT | Shimadzu LC-10AT | N/A |
Column | Supelco LC-SAX 1 (250 mm × 4.6 mm i.d., 5 µm) | Dionex IonPac CS5A (250 mm × 4.0 mm i.d., 5 µm) | N/A |
Mobile phase | Phosphate buffer | PDCA eluent | N/A |
composition | 2.5 mmol L−1 disodium hydrophosphate (Na2HPO4), 25 mmol L−1 potassium dihydrophosphate (KH2PO4 2H2O) | 7.0 mmol L−1 pyridine-2,6-dicarboxylic acid (PDCA), 66 mmol L−1 potassium hydroxide (KOH), 5.6 mmol L−1 potassium sulfate (K2SO4), 74 mmol L−1 formic acid (HCOOH) | N/A |
pH | 6.0 ± 0.2 | 4.2 ± 0.2 | N/A |
flow rate [mL min−1] | 2.0 | 2.0 | N/A |
Injection volume [mL] | 0.2 | 0.2 | N/A |
Spray chamber type | MSIS (Agilent) | MSIS (Agilent) | Double-pass cyclonic (Agilent) |
Work mode | HG | Nebulization | Nebulization |
Sample channel | Lower inlet | Nebulizer (OneNeb, Agilent) | Nebulizer (OneNeb, Agilent) |
HG parameters | |||
NaBH4 concentration [%, w/v] | 1.0 | N/A | N/A |
NaOH concentration [%, v/v] | 0.1 | N/A | N/A |
HCl concentration [mol L−1] | 5.0 | N/A | N/A |
NaBH4 flow rate [mL min−1] | 1.0 | N/A | N/A |
HCl flow rate [mL min−1] | 1.0 | N/A | N/A |
ICP OES conditions | |||
Spectrometer | ICP 5110 Dual-View | ICP 5110 Dual-View | ICP 5110 Dual-View |
RF power [kW] | 1.45 | 1.20 | 1.20 |
Nebulizer gas flow [L min−1] | 0.7 | 0.7 | 0.7 |
Plasma gas flow [L min−1] | 12 | 12 | 12 |
Auxiliary gas flow [L min−1] | 1.0 | 1.0 | 1.0 |
Torch view | axial | SVDV | SVDV |
Analytical wavelengths [nm] | As 188.980 | Fe 238.204 | Al 396.152, As 188.980, Cd 214.439, Cr 267.716, Co 238.892, Cu 327.395, Fe 238.204, Hg 194.164, Li 670.783, Mn 257.610, Mo 202.032, Ni 231.604, Pb 220.353, Sb 206.834, Se 196.026, Zn 213.857. |
Al a | As a | As(III) b | As(V) b | DMA b | Cd a | Co a | Cr a | Cu a | Fe a | Fe(II) c | Fe(III) c | Hg a | Li a | Mn a | Mo a | Ni a | Pb a | Sb a | Se a | Zn a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QL [µg L−1] | 9.3 | 18 | 6.2 | 21 | 19 | 0.5 | 0.7 | 0.6 | 0.5 | 6.7 | 36 | 30 | 4.0 | 0.3 | 5.8 | 1.5 | 5.0 | 12 | 17 | 7.0 | 1.6 |
QL(ext) [mg kg−1] | 0.093 | 0.180 | 0.062 | 0.210 | 0.190 | 0.005 | 0.007 | * | 0.005 | 0.067 | 0.360 | 0.300 | 0.040 | 0.003 | 0.058 | 0.015 | 0.050 | 0.120 | 0.170 | 0.070 | 0.016 |
QL(total) [mg kg−1] | 0.190 | 0.360 | x | x | x | 0.010 | 0.014 | 0.012 | 0.010 | 0.134 | x | x | 0.080 | 0.006 | 0.116 | 0.030 | 0.100 | 0.240 | 0.340 | 0.140 | 0.032 |
Origin | Kind (Type) | Composition (Purity) | Whole Population | |||||
---|---|---|---|---|---|---|---|---|
Argentina (n = 15) | Brazil (n = 23) | Paraguay (n = 18) | Con Palo (n = 30) | Despalada (n = 26) | Pure Mate (n = 24) | With Additives (n = 34) | (n = 58) | |
Elements | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) |
Al | 210 {86–337} | 220 {97–366} | 208 {128–371} | 210 {86–371} | 220 {97–366} | 226 {128–366} | 207 {86–371} | 215 {86–371} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | |
As | 2.40 {1.66–2.43} | 0.79 {0.39–3.11} | 1.61 {0.71–2.42} | 1.81 {0.71–2.43} | 0.83 {0.39–3.11} | 2.18 {0.39–2.43} | 0.89 {0.40–3.11} | 1.08 {0.39–3.11} |
(3) | (10) | (6) | (8) | (11) | (4) | (16) | (20) | |
Cd | 0.30 {0.16–0.52} | 0.41 {0.25–0.68} | 0.43 {0.26–0.64} | 0.41 {0.16–0.64} | 0.40 {0.24–0.68} | 0.41 {0.16–0.62} | 0.40 {0.24–0.72} | 0.41 {0.16–0.72} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | |
Co | 0.79 {0.16–1.68} | 0.34 {0.02–0.94} | 0.33 {0.17–0.60} | 0.41 {0.16–1.68} | 0.37 {0.02–0.94} | 0.47 {0.16–1.68} | 0.34 {0.02–0.94} | 0.39 {0.02–1.68} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | |
Cr | 0.64 {0.26–2.11} | 0.57 {0.01–1.20} | 0.52 {0.35–0.79} | 0.53 {0.26–2.11} | 0.56 {0.01–1.20} | 0.59 {0.30–1.20} | 0.53 {0.01–2.11} | 0.55 {0.01–2.11} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | |
Cu | 5.46 {3.01–9.20} | 7.14 {4.45–9.50} | 6.32 {4.62–10.6} | 6.16 {3.95–10.6} | 7.06 {3.01–9.50} | 5.60 {3.01–9.50} | 6.98 {3.95–10.6} | 6.75 {3.01–10.6} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | |
Fe | 164 {113–532} | 141 {51–1059} | 233 {145–510} | 196 {118–532} | 144 {51–1059} | 176 {113–1059} | 170 {51–660} | 173 {51–1059} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | |
Hg | 0.29 {0.09–0.59} | 0.26 {0.09–1.34} | 0.33 {0.03–0.56} | 0.33 {0.03–0.59} | 0.22 {0.09–1.34} | 0.31 {0.03–0.59} | 0.30 {0.09–1.34} | 0.30 {0.03–1.34} |
(8) | (10) | (8) | (15) | (11) | (12) | (15) | (27) | |
Li | 0.06 {0.01–0.09} | 0.06 {0.01–0.18} | 0.10 {0.03–0.21} | 0.07 {0.01–0.21} | 0.06 {0.01–0.18} | 0.07 {0.01–0.21} | 0.06 {0.01–0.21} | 0.06 {0.01–0.21} |
(9) | (14) | (18) | (25) | (16) | (19) | (23) | (42) | |
Mn | 2717 {986–3461} | 1518 {800–2321} | 1231 {653–1966} | 1396 {653–3461} | 1650 {800–3265} | 1969 {797–3461} | 1448 {653–3257} | 1575 {653–3461} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | |
Mo | 0.28 {0.06–0.52} | 0.15 {0.05–0.94} | 0.23 {0.05–0.55} | 0.22 {0.05–0.55} | 0.18 {0.05–0.94} | 0.24 {0.07–0.55} | 0.19 {0.05–0.94} | 0.21 {0.05–0.94} |
(14) | (21) | (17) | (28) | (24) | (23) | (31) | (54) | |
Ni | 5.79 {3.26–8.60} | 4.01 {2.65–11.9} | 4.27 {2.57–12.9} | 4.82 {2.57–12.9} | 4.08 {2.65–11.9} | 5.25 {2.57–12.9} | 4.11 {2.61–11.9} | 4.30 {2.57–12.9} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | |
Pb | 0.88 {0.60–1.17} | 0.45 {0.27–2.92} | 0.59 {0.27–1.24} | 0.60 {0.27–1.24} | 0.45 {0.27–2.92} | 0.90 {0.27–1.25} | 0.58 {0.27–2.92} | 0.60 {0.27–2.92} |
(2) | (7) | (5) | (7) | (7) | (5) | (10) | (15) | |
Sb | 0.90 {0.29–2.77} | 1.04 {0.39–3.10} | 1.17 {0.40–2.60} | 0.91 {0.40–2.60} | 1.21 {0.29–3.10} | 0.89 {0.29–2.77} | 0.94 {0.39–3.10} | 0.92 {0.29–3.10} |
(14) | (17) | (17) | (28) | (20) | (21) | (29) | (50) | |
Se | 0.76 {0.47–2.15} | 0.86 {0.15–2.54} | 0.71 {0.57–2.25} | 0.71 {0.47–2.25} | 0.90 {0.15–2.54} | 0.73 {0.47–2.15} | 0.90 {0.15–2.54} | 0.81 {0.15–2.54} |
(8) | (17) | (11) | (18) | (18) | (12) | (26) | (38) | |
Zn | 36.5 {24.3–68.7} | 42.5 {31.3–135} | 78.5 {55.2–105} | 66.9 {27.4–103} | 41.7 {24.3–135} | 57.5 {24.3–135} | 56.3 {27.2–110} | 57.2 {24.3–135} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) |
Origin | Kind (Type) | Composition (Purity) | Whole Population (n = 58) | ||||||
---|---|---|---|---|---|---|---|---|---|
Argentina (n = 15) | Brazil (n = 23) | Paraguay (n = 18) | Con Palo (n = 30) | Despalada (n = 26) | Pure Mate (n = 24) | With Additives (n = 34) | Content (mg kg−1) | % of Total Content | |
Elements | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) | Median {Range} (AQL) |
Al | 66.2 {8.70–132} | 51.1 {16.3–124} | 41.6 {12.5–131} | 47.6 {8.70–132} | 54.4 {16.3–124} | 60.1 {8.70–132} | 49.2 {20.2–131} | 52.9 {8.70–132} | 28 {4–80} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | (58) | |
As | 0.68 {0.62–0.74} | 0.26 {0.24–0.28} | 0.40 {0.18–0.54} | 0.47 {0.18–0.62} | 0.28 {0.24–0.74} | 0.57 {0.40–0.74} | 0.27 {0.18–0.62} | 0.34 {0.18–0.74} | 29 {20–66} |
(2) | (2) | (3) | (4) | (3) | (2) | (6) | (8) | (8) | |
Cd | 0.05 {0.02–0.22} | 0.06 {0.02–0.21} | 0.11 {0.04–0.35} | 0.07 {0.02–0.35} | 0.06 {0.02–0.21} | 0.05 {0.02–0.35} | 0.08 {0.02–0.33} | 0.07 {0.02–0.35} | 17 {3–86} |
(13) | (20) | (13) | (23) | (23) | (21) | (27) | (48) | (48) | |
Co | 0.24 {0.07–0.51} | 0.18 {0.03–0.60} | 0.16 {0.02–0.44} | 0.18 {0.03–0.51} | 0.17 {0.02–0.60} | 0.16 {0.02–0.51} | 0.19 {0.03–0.60} | 0.18 {0.02–0.60} | 37 {3–99.8} |
(14) | (17) | (15) | (26) | (20) | (22) | (25) | (47) | (47) | |
Cr | x | x | x | x | x | x | x | x | x |
Cu | 2.22 {0.43–4.52} | 2.54 {0.77–4.42} | 1.95 {0.56–4.91} | 2.10 {0.43–4.91} | 2.65 {0.77–4.42} | 2.29 {0.43–4.06} | 2.50 {0.86–5.79} | 2.30 {0.43–5.79} | 39 {8–99} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | (58) | |
Fe | 13.8 {2.92–29.4} | 11.5 {4.18–27.3} | 13.4 {5.72–62.8} | 13.8 {2.92–62.8} | 11.9 {4.18–27.3} | 12.9 {2.92–33.3} | 13.8 {4.18–62.8} | 13.2 {2.92–62.8} | 8 {1–53} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | (58) | |
Hg | 0.08 * | BQL | BQL | 0.08 * | BQL | BQL | 0.08 * | 0.08 * | 84 * |
(1) | (1) | (1) | (1) | (1) | |||||
Li | BQL | BQL | 0.03 {0.01–0.04} | 0.03 {0.01–0.04} | BQL | BQL | 0.03 {0.01–0.04} | 0.03 {0.01–0.04} | 34 {33–35} |
(2) | (2) | (2) | (2) | (2) | |||||
Mn | 513 {58.7–1110} | 326 {126–860} | 239 {29.3–913} | 317 {29.3–1110} | 342 {126–922} | 376 {29.3–1110} | 313 {63.9–1085} | 343 {29.3–1110} | 23 {2–66} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | (58) | |
Mo | BQL | 0.14 * | 0.11 * | 0.11 * | 0.14 * | 0.11 * | 0.13 {0.13–0.14} | 0.13 {0.11–0.14} | 57 {32–60} |
(1) | (1) | (1) | (1) | (1) | (2) | (3) | (3) | ||
Ni | 1.60 {0.77–2.67} | 1.01 {0.08–2.35} | 1.09 {0.29–2.70} | 1.39 {0.29–2.70} | 1.01 {0.08–2.67} | 1.47 {0.29–2.67} | 1.02 {0.08–2.70} | 1.11 {0.08–2.70} | 27 {3–70} |
(14) | (23) | (18) | (29) | (26) | (23) | (34) | (57) | (57) | |
Pb | 0.82 * | 0.71 {0.11–1.37} | 0.44 {0.21–0.59} | 0.51 {0.21–0.82} | 0.71 {0.11–1.37} | 0.76 {0.71–0.82} | 0.44 {0.11–1.37} | 0.59 {0.11–1.37} | 56 {17–75} |
(1) | (3) | (3) | (4) | (3) | (2) | (5) | (7) | (7) | |
Sb | 0.44 {0.13–0.80} | 0.27 {0.09–0.65} | 0.39 {0.08–1.17} | 0.42 {0.08–1.17} | 0.27 {0.09–0.65} | 0.34 {0.08–0.68} | 0.42 {0.09–1.17} | 0.39 {0.08–1.17} | 36 {9–94} |
(13) | (17) | (16) | (27) | (19) | (19) | (29) | (48) | (48) | |
Se | 0.70 {0.15–1.25} | 0.88 {0.83–0.95} | 1.12 * | 0.64 {0.15–1.12} | 0.91 {0.83–1.25} | 0.70 {0.15–1.25} | 0.88 {0.18–1.12} | 0.88 {0.15–1.25} | 61 {19–88} |
(2) | (3) | (1) | (2) | (4) | (2) | (5) | (7) | (7) | |
Zn | 16.1 {1.69–36.2} | 19.7 {6.79–33.7} | 23.9 {5.50–72.2} | 19.5 {1.69–72.2} | 19.4 {6.79–37.6} | 15.4 {1.69–66.3} | 21.6 {6.79–72.2} | 19.4 {1.69–72.2} | 35 {5–99} |
(15) | (23) | (18) | (30) | (26) | (24) | (34) | (58) | (58) |
Group | N | Al | As | Cd | Co | Cr | Cu | Fe | Hg | Li | Mn | Mo | Ni | Pb | Sb | Se | Zn | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Whole population | 58 | 217 ± 67 | 1.35 ± 0.81 | 0.41 ± 0.13 | 0.49 ± 0.37 | 0.60 ± 0.28 | 6.69 ± 1.60 | 221 ± 168 | 0.33 ± 0.26 | 0.08 ± 0.05 | 1727 ± 735 | 0.26 ± 0.18 | 4.79 ± 2.00 | 0.86 ± 0.65 | 1.18 ± 0.68 | 0.93 ± 0.52 | 59.4 ± 24.9 | This study | |
54 | 361 ± 108 | 0.052 ± 0.251 | 0.410 ± 0.180 | 0.169 ± 0.956 | 0.528 ± 0.240 | 11.9 ± 2.06 | 205 ± 89.1 | ND | 0.085 ± 0.079 | 1078 ± 377 | 0.066 ± 0.325 | 2.74 ± 0.945 | 0.314 ± 0.181 | ND | ND | 63.6 ± 25.0 | [11] | ||
32 | 90.4 ± 50.9 | ND | 0.19 ± 0.12 | BQL | 0.35 ± 0.13 | 5.17 ± 2.07 | 21.6 ± 16.5 | ND | 3.57 ± 1.94 | 66.4 ± 30.2 | 0.60 ± 0.40 | 1.39 ± 0.44 | 0.36 ± 0.41 | ND | ND | 32.5 ± 11.9 | [23] | ||
Origin | Argentina | 15 | 214 ± 63 | 2.16 ± 0.36 | 0.32 ± 0.13 | 0.88 ± 0.43 | 0.73 ± 0.40 | 5.73 ± 1.57 | 216 ± 127 | 0.27 ± 0.16 | 0.05 ± 0.03 | 2543 ± 672 | 0.28 ± 0.14 | 5.71 ± 1.41 | 0.88 b | 1.07 ± 0.60 | 0.89 ± 0.49 | 43.1 ± 15.4 | This study |
14 | 347 ± 60 | 0.04 ± 0.01 | 0.373 ± 0.167 | 0.209 ± 0.073 | 0.689 ± 0.18 | 12.6 ± 2.0 | 196 ± 42 | ND | 66.9 ± 22.4 | 1368 ± 256 | 0.051 ± 0.020 | 2.72 ± 0.718 | 0.222 ± 0.107 | BDL | BDL | 79.4 ± 17.7 | [20] | ||
10 | ND | ND | 0.31 a | ND | 1.15 a | 7.72 a | 200 a | ND | ND | 1730 a | ND | 3.96 a | 0.40 a | ND | ND | 78.01 a | [25] | ||
Brazil | 23 | 216 ± 73 | 1.02 ± 0.80 | 0.44 ± 0.12 | 0.39 ± 0.28 | 0.61 ± 0.25 | 7.38 ± 1.22 | 203 ± 225 | 0.37 ± 0.36 | 0.06 ± 0.04 | 1525 ± 448 | 0.22 ± 0.21 | 4.38 ± 1.98 | 0.92 ± 0.88 | 1.28 ± 0.78 | 0.91 ± 0.54 | 55.9 ± 27.4 | This study | |
19 | 291 ± 56 | 0.05 ± 0.03 | 0.491 ± 0.225 | 0.121 ± 0.094 | 0.37 ± 0.19 | 11.4 ± 2.1 | 154 ± 48 | ND | 74.5 ± 134 | 987 ± 352 | 0.066 ± 0.040 | 2.38 ± 1.14 | 0.407 ± 0.230 | BDL | BDL | 44.2 ± 14.7 | [20] | ||
9 | 378 ± 113 | 0.04 ± 0.02 | 0.40 ± 0.13 | 0.21 ± 0.09 | ND | 9.22 ± 0.95 | 280 ± 221 | ND | 0.11 ± 0.06 | 1313 ± 592 | 0.05 ± 0.05 | 2.19 ± 0.55 | 0.28 ± 0.12 | ND | 0.03 ± 0.02 | 55 ± 13 | [22] | ||
Paraguay | 18 | 219 ± 63 | 1.59 ± 0.67 | 0.45 ± 0.10 | 0.33 ± 0.11 | 0.52 ± 0.11 | 6.44 ± 1.62 | 257 ± 102 | 0.34 ± 0.16 | 0.10 ± 0.05 | 1224 ± 339 | 0.28 ± 0.17 | 4.53 ± 2.25 | 0.78 ± 0.38 | 1.23 ± 0.62 | 0.97 ± 0.55 | 79.0 ± 12.7 | This study | |
14 | 384 ± 62 | 0.06 ± 0.03 | 0.295 ± 0.082 | 0.101 ± 0.084 | 0.70 ± 0.13 | 11.1 ± 1.9 | 226 ± 122 | ND | 59.1 ± 33.3 | 730 ± 150 | 0.089 ± 0.022 | 2.81 ± 0.720 | 0.314 ± 0.178 | BDL | BDL | 77.3 ± 25.4 | [20] | ||
5 | ND | ND | 0.30 a | ND | 0.88 a | 7.28 a | 130 a | ND | ND | 680 a | ND | 3.03 a | 0.45 a | ND | ND | 115.05 a | [25] | ||
Kind (type) | con palo | 30 | 216 ± 63 | 1.70 ± 0.64 | 0.40 ± 0.13 | 0.56 ± 0.42 | 0.62 ± 0.31 | 6.26 ± 1.61 | 237 ± 118 | 0.32 ± 0.16 | 0.08 ± 0.06 | 1776 ± 836 | 0.26 ± 0.15 | 5.06 ± 2.06 | 0.81 ± 0.36 | 1.09 ± 0.50 | 0.87 ± 0.46 | 63.7 ± 20.3 | This study |
10 | ND | ND | 0.33 a | ND | 0.95 a | 7.35 a | 150 a | ND | ND | 1070 a | ND | 3.27 a | 0.39 a | ND | ND | 96.49 a | [25] | ||
despalada | 26 | 217 ± 72 | 1.15 ± 0.86 | 0.43 ± 0.12 | 0.43 ± 0.29 | 0.61 ± 0.23 | 7.07 ± 1.49 | 208 ± 215 | 0.35 ± 0.36 | 0.06 ± 0.03 | 1615 ± 541 | 0.25 ± 0.22 | 4.47 ± 1.93 | 0.92 ± 0.88 | 1.36 ± 0.85 | 0.97 ± 0.60 | 55.5 ± 28.7 | This study | |
5 | ND | ND | 0.28 a | ND | 1.29 a | 8.03 a | 220 a | ND | ND | 1990 a | ND | 4.41 a | 0.52 a | ND | ND | 78.10 a | [25] | ||
Composition (purity) | pure mate | 24 | 235 ± 69 | 1.79 ± 0.83 | 0.38 ± 0.14 | 0.65 ± 0.44 | 0.62 ± 0.19 | 6.15 ± 1.59 | 250 ± 191 | 0.29 ± 0.13 | 0.07 ± 0.05 | 2037 ± 837 | 0.27 ± 0.15 | 5.38 ± 2.18 | 0.84 ± 0.36 | 1.11 ± 0.61 | 0.83 ± 0.42 | 58.2 ± 27.4 | This study |
with additives | 34 | 205 ± 62 | 1.24 ± 0.77 | 0.43 ± 0.13 | 0.38 ± 0.26 | 0.59 ± 0.33 | 7.06 ± 1.50 | 201 ± 146 | 0.37 ± 0.32 | 0.08 ± 0.05 | 1509 ± 558 | 0.24 ± 0.20 | 4.37 ± 1.74 | 0.88 ± 0.76 | 1.24 ± 0.71 | 0.97 ± 0.56 | 60.3 ± 22.9 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proch, J.; Orłowska, A.; Niedzielski, P. Elemental and Speciation Analyses of Different Brands of Yerba Mate (Ilex paraguariensis). Foods 2021, 10, 2925. https://doi.org/10.3390/foods10122925
Proch J, Orłowska A, Niedzielski P. Elemental and Speciation Analyses of Different Brands of Yerba Mate (Ilex paraguariensis). Foods. 2021; 10(12):2925. https://doi.org/10.3390/foods10122925
Chicago/Turabian StyleProch, Jędrzej, Aleksandra Orłowska, and Przemysław Niedzielski. 2021. "Elemental and Speciation Analyses of Different Brands of Yerba Mate (Ilex paraguariensis)" Foods 10, no. 12: 2925. https://doi.org/10.3390/foods10122925
APA StyleProch, J., Orłowska, A., & Niedzielski, P. (2021). Elemental and Speciation Analyses of Different Brands of Yerba Mate (Ilex paraguariensis). Foods, 10(12), 2925. https://doi.org/10.3390/foods10122925