Differences in Eating Quality Attributes between Japonica Rice from the Northeast Region and Semiglutinous Japonica Rice from the Yangtze River Delta of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rice Taste Value
2.3. Rice Texture Profile Analysis
2.4. Rice Cooking Properties
2.5. Flour Preparation and Starch Isolation
2.6. Rice Flour Pasting Properties
2.7. Rice Flour Rheological Properties
2.8. Starch Composition
2.9. Isolation and Determination of Protein Components
2.10. Starch Molecular Size-Distributions
2.11. Amylopectin Fine Structure Analysis
2.12. Particle Size Analysis
2.13. X-ray Diffraction Analysis
2.14. Small-Angle X-ray Scattering (SAXS) Analysis
2.15. Determination of Thermal Properties
2.16. Statistical Analysis
3. Results
3.1. Cooked Rice Properties
3.2. Rice Flour and Paste Properties
3.3. Compositions of Starch and Protein
3.4. Fine Structure of Starch
3.5. Physicochemical Properties of Starch
4. Discussion
4.1. Mechanisms Underlying a Good Quality of Taste of Japonica Rice from the NR and YRD in China
4.2. Differences in Eating Quality Characteristics between Two SGJR Cultivars
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakamura, S.; Cui, J.; Zhang, X.; Yang, F.; Xu, X.; Sheng, H.; Ohtsubo, K.I. Comparison of eating quality and physicochemical properties between Japanese and Chinese rice cultivars. Biosci. Biotech. Biochem. 2016, 80, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.B.; Tang, Q.Y.; Zou, Y.B. Current Status and Challenges of Rice Production in China. Plant. Prod. Sci. 2008, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Abdula, S.E.; Lee, H.; Cho, Y.; Han, L.; Koh, H.; Cho, Y. Molecular Aspect of Good Eating Quality Formation in Japonica Rice. PLoS ONE 2013, 6, e18385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.Y.; Lin, Z.M.; Liu, Z.H.; Ajim, M.A.; Bi, J.G.; Li, G.H.; Wang, Q.S.; Wang, S.H.; Ding, Y.F. Physicochemical and Sensory Properties of japonica Rice Varied with Production Areas in China. J. Integr. Agric. 2013, 12, 1748–1756. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Kong, X.; Xie, J.; Xu, L. Analysis of genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. J. Agric. Food Chem. 2004, 52, 6010–6016. [Google Scholar] [CrossRef]
- Xu, Y.J.; Ying, Y.N.; Ouyang, S.H.; Duan, X.L.; Sun, H.; Jiang, S.K.; Sun, S.C.; Bao, J.S. Factors Affecting Sensory Quality of Cooked japonica Rice. Rice Sci. 2018, 25, 330–339. [Google Scholar]
- He, G.S.; Wang, H.Z.; Cheng, X.Y.; Ma, Z.B.; Liu, D.; Quan, C.; Lv, Y.D.; Xu, Z.J. Comparative study on rice quality traits in different ages in three northeastern provinces. Heilongjiang Agric. Sci. 2011, 8, 5–10. (In Chinese) [Google Scholar]
- Yu, S.F.; Ma, Y.; Sun, D.W. Impact of amylose content on starch retrogradation and texture of cooked milled rice during storage. J. Cereal Sci. 2009, 50, 139–144. [Google Scholar] [CrossRef]
- Ma, H.Z.; Chen, X.Y.; Wang, Z.J.; Zhu, Y.; Jiang, W.Q.; Ren, G.L.; Ma, Z.T.; Wei, H.Y.; Zhang, H.C.; Liu, G.D. Analysis on Appearance and Cooking Taste Quality Characteristics of Some High Quality Japonica Rice in China. Sci. Agric. Sin. 2021, 54, 1338–1353. (In Chinese) [Google Scholar]
- Chen, Z.F. The Difference of Yield and Quality of Japonica Rice between North and South China. Master’s Thesis, Yangzhou University, Yangzhou, China, 2020. (In Chinese). [Google Scholar]
- Xu, Z.J.; Han, Y.; Shao, G.J.; Zhang, X.J.; Quan, C.Z.; Pan, G.J.; Yan, P.; Chen, W.F. Comparison of Rice Quality Characters in Northeast Region of China. Chin. J. Rice Sci. 2010, 24, 531–534. (In Chinese) [Google Scholar]
- Peng, S.B.; Buresh, R.J.; Huang, J.L.; Yang, J.C.; Zou, Y.B.; Zhong, X.H.; Wang, G.H.; Zhang, F.S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crop. Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Gu, J.F.; Chen, J.; Chen, L.; Wang, Z.Q.; Zhang, H.; Yang, J.C. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop. J. 2015, 3, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Deng, N.Y.; Ling, X.X.; Sun, Y.; Zhang, C.D.; Fahad, S.; Peng, S.B.; Cui, K.H.; Nie, L.X.; Huang, J.L. Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. Eur. J. Agron. 2015, 64, 37–46. [Google Scholar] [CrossRef]
- Wani, A.A.; Singh, P.; Shah, M.A.; Schweiggert-Weisz, U.; Gul, K.; Wani, I.A. Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties—A Review. Compr. Rev. Food Sci. F. 2012, 11, 417–436. [Google Scholar] [CrossRef]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016, 196, 702–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.X.; Liu, Q.Q.; Xu, L.; Lu, M.F.; Cai, X.L.; Gong, Z.Y.; Yi, C.D.; Wang, Z.Y.; Gu, M.H. Breeding and Field Performance of Novel Soft and Waxy Transgenic Rice Lines Without Selectable Marker. Acta Agron. Sin. 2009, 35, 967–973. [Google Scholar]
- Xu, Z.H.; Yu, M.M.; Yin, Y.W.; Zhu, C.W.; Ji, W. Generation of selectable marker-free soft transgenic rice with transparent kernels by downregulation of SSSⅡ-2. Crop. J. 2020, 8, 57–65. [Google Scholar] [CrossRef]
- Bian, J.L.; Xu, F.F.; Han, C.; Qiu, S.; Ge, J.L.; Xu, J.; Zhang, H.C.; Wei, H.Y. Effects of planting methods on yield and quality of different types of japonica rice in northern Jiangsu plain, China. J. Integr. Agric. 2018, 17, 2624–2635. [Google Scholar] [CrossRef]
- Zhu, D.W.; Zhang, H.C.; Guo, B.W.; Xu, K.; Dai, Q.G.; Wei, C.X.; Zhou, G.S.; Huo, Z.Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll. 2017, 63, 525–532. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, Q.Y.; Jiang, W.Q.; Qiu, S.; Wei, H.Y.; Zhang, H.C.; Liu, G.D.; Xing, Z.P.; Hu, Y.J.; Guo, B.W. Effects of mid-stage nitrogen application timing on the morphological structure and physicochemical properties of Japonica rice starch. J. Sci. Food Agric. 2020, 101, 2463–2471. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.J.; Li, L.; Tian, J.Y.; Zhang, C.X.; Wang, J.; Yu, E.W.; Xing, Z.P.; Guo, B.W.; Wei, H.Y.; Huo, Z.Y.; et al. Effects of dynamic low temperature during the grain filling stage on starch morphological structure, physicochemical properties, and eating quality of soft japonica rice. Cereal Chem. 2020, 97, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.C.; Fu, L.B.; Tu, Y.S.; Zhao, H.F.; Kuang, L.H.; Zhang, G.P. The Influence of Nitrogen Application Level on Eating Quality of the Two Indica-Japonica Hybrid Rice Cultivars. Plants 2002, 9, 1663. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.T.; Ge, J.L.; Xu, K.; Gao, H.; Liu, G.D.; Wei, H.Y.; Zhang, H.C. Differences in starch structure, thermal properties, and texture characteristics of rice from main stem and tiller panicles. Food Hydrocoll. 2020, 99, 105341.1–105341.8. [Google Scholar] [CrossRef]
- Zhan, X.M.; Zhen, T.S.; Tao, J.H. Study on Application of Texture Analyzer in Quality Evaluation of Rice. Food Sci. 2007, 28, 62–65. (In Chinese) [Google Scholar]
- Tangsrianugul, N.; Wongsagonsup, R.; Suphantharika, M. Physicochemical and rheological properties of flour and starch from Thai pigmented rice cultivars. Int. J. Biol. Macromol. 2019, 15, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.F.; Li, J.X.; Yu, S.B.; Xing, Y.Z.; Xu, C.G.; Zhang, Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor. Appl. Genet. 1999, 99, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Qi, P.F.; Cao, Y.L.; Han, Y.N.; Ma, H.L.; Guo, Z.R.; Wang, Y.; Qiao, Y.Y.; Hua, S.Y.; Yu, H.Y.; et al. Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Sci. Rep. 2018, 8, 11928.1–11928.13. [Google Scholar] [CrossRef]
- Wang, K.; Vilaplana, F.; Wu, A.; Hasjim, J.; Gilbert, R.G. The size dependence of the average number of branches in amylose. Carbohyd. Polym. 2019, 223, 115–134. [Google Scholar] [CrossRef]
- Wang, K.; Hasjim, J.; Wu, A.C.; Li, E.P.; Henry, R.J.; Gilbert, R.G. Roles of GBSSI and SSIIa in determining amylose fine structure. Carbohyd. Polym. 2015, 127, 264–274. [Google Scholar] [CrossRef]
- Yuryev, V.P.; Krivandin, A.V.; Kiseleva, V.I.; Wasserman, L.A.; Genkina, N.K.; Fornal, J.; Blaszczak, W.; Schiraldi, A. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohyd. Res. 2004, 339, 2683–2691. [Google Scholar] [CrossRef]
- Cai, C.; Cai, J.; Man, J.; Yang, Y.; Wang, Z.; Wei, C. Allomorph distribution and granule structure of lotus rhizome C-type starch during gelatinization. Food Chem. 2014, 142, 408–415. [Google Scholar] [CrossRef]
- Lu, D.L.; Lu, W.P. Effects of protein removal on the physicochemical properties of waxy maize flours. Starch-Starke 2012, 64, 874–881. [Google Scholar] [CrossRef]
- Lal, M.K.; Singh, B.; Sharma, S.; Singh, M.P.; Kumar, A. Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends Food Sci. Technol. 2021, 111, 741–755. [Google Scholar] [CrossRef]
- Shinada, H.; Yamamoto, T.; Yamamoto, E.; Hori, K.; Hirayama, Y.; Maekawa, T.; Kiuchi, H.; Sato, H.; Sato, T. Quantitative trait loci for whiteness of cooked rice detected in improved rice cultivars in Hokkaido. Breed. Sci. 2015, 65, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R.F.; Snape, C.E.; Yuryev, V.; Wasserman, L.A.; Ansell, R. Molecular basis of the gelatinisation and swelling characteristics of waxy barley starches grown in the same location during the same season. Part II. Crystallinity and gelatinisation characteristics. J. Cereal Sci. 2004, 39, 57–66. [Google Scholar] [CrossRef]
- Jane, J.L. Structure of Starch Granules. J. Appl. Glycosci. 2007, 54, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch-composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Jassar, S.; Thomas, L. A comparison in rheological, thermal, and structural properties between Indian Basmati and Egyptian Giza rice flour dispersions as influenced by particle size. Food Hydrocoll. 2015, 48, 72–83. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Structure-function relationships of starch components. Starch-Starke 2015, 67, 55–68. [Google Scholar] [CrossRef]
- Lindeboom, N.; Chang, P.R.; Tyler, R.T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch Starke 2004, 56, 89–99. [Google Scholar] [CrossRef]
- Tamura, M.; Ogawa, Y. Visualization of the coated layer at the surface of rice grain cooked with varying amounts of cooking water. J. Cereal Sci. 2012, 56, 404–409. [Google Scholar] [CrossRef]
- Okuda, R.; Ishimura, T.; Kanatani, A. Study on Rice Cooking, Part 1: Effect of Solid Components in the Rice Cooking Liquid on the Rice Grain Surface. Sci. Cookery 2009, 42, 394–403. [Google Scholar]
- Martin, M.; Fitzgerald, M.A. Proteins in Rice Grains Influence Cooking Properties! J. Cereal Sci. 2002, 36, 285–294. [Google Scholar] [CrossRef]
- Saleh, M.I.; Meullenet, J.F. Effect of protein disruption using proteolytic treatment on cooked rice texture properties. J. Texture Stud. 2007, 38, 423–437. [Google Scholar] [CrossRef]
- Thaiudom, S.; Pracham, S. The influence of rice protein content and mixed stabilizers on textural and rheological properties of jasmine rice pudding. Food Hydrocoll. 2018, 76, 204–215. [Google Scholar] [CrossRef]
- Saleh, M.I. Protein-starch matrix microstructure during rice flour pastes formation. J. Cereal Sci. 2017, 74, 183–186. [Google Scholar] [CrossRef]
- Wang, Y.R.; Zhang, B.; Fan, J.L.; Yang, Q.; Chen, H.Q. Effects of sodium tripolyphosphate modification on the structural, functional, and rheological properties of rice glutelin. Food Chem. 2019, 281, 18–27. [Google Scholar] [CrossRef]
- Xia, Y.J.; Wang, J.; Xing, C.R.; Yuan, J. Analysis of Rice Quality in Jianghuai Region. J. Chin. Cereal Oil. Assoc. 2020, 35, 8–13. (In Chinese) [Google Scholar]
- Singh, N.; Pal, N.; Mahajan, G.; Singh, S.; Shevkani, K. Rice grain and starch properties: Effects of nitrogen fertilizer application. Carbohyd. Polym. 2011, 86, 219–225. [Google Scholar] [CrossRef]
- Keetels, C.; Vliet, T.V.; Walstra, P. Gelation and retrogradation of concentrated starch systems: 1 Gelation. Food Hydrocoll. 1996, 10, 355–362. [Google Scholar] [CrossRef]
- Vandeputte, G.E.; Vermeylen, R.; Geeroms, J.; Delcour, J.A. Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. J. Cereal Sci. 2003, 38, 43–52. [Google Scholar] [CrossRef]
- Zhu, L.; Bi, S.L.; Wu, G.C.; Gong, B.; Zhang, H.; Wang, L.; Qian, H.F.; Qi, X.G. Study of the migration and molecular structure of starch and protein in rice kernel during heating. Int. J. Biol. Macromol. 2020, 147, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Taste Analyzer Properties | Texture Properties | Cooking Properties | ||||||
---|---|---|---|---|---|---|---|---|---|
Taste Value | Appearance | Hardness (g) | Elasticity (%) | Adhesiveness (g) | Water Absorption Rate (%) | Volume Expansion Rate (%) | Iodine Blue Value (A) | Weight of Dried Solids (mg/g) | |
Daohuaxiang2 | 80 ± 1 ab | 7.7 ± 0.1 b | 205 ± 4 a | 0.565 ± 0.003 a | 1167 ± 1 b | 391 ± 4 a | 532 ± 3 a | 1.404 ± 0.004 a | 186 ± 1 b |
Nangeng46 | 82 ± 1 a | 8.2 ± 0.1 a | 144 ± 2 c | 0.491 ± 0.001 b | 1191 ± 1 a | 354 ± 3 b | 447 ± 4 b | 0.284 ± 0.004 b | 222 ± 1 a |
Nangeng2728 | 62 ± 1 c | 5.8 ± 0.1 c | 166 ± 1 b | 0.473 ± 0.001 c | 1159 ± 2 c | 297 ± 2 c | 375 ± 3 c | 0.254 ± 0.003 c | 154 ± 1 c |
Cultivar | Peak Viscosity (cP) | Trough Viscosity (cP) | Final Viscosity (cP) | Breakdown (cP) | Setback (cP) | Consistence (cP) |
---|---|---|---|---|---|---|
Daohuaxiang2 | 2673 ± 4 a | 1503 ± 3 a | 2431 ± 4 a | 1170 ± 1 b | −242 ± 1 a | 928 ± 1 a |
Nangeng46 | 2668 ± 7 a | 1480 ± 5 b | 2038 ± 7 b | 1188 ± 2 a | −630 ± 1 c | 558 ± 2 b |
Nangeng2728 | 1804 ± 4 b | 884 ± 4 c | 1425 ± 6 c | 920 ± 1 c | −379 ± 2 b | 541 ± 2 c |
Cultivar | Starch Components (%) | Protein Components (%) | ||||||
---|---|---|---|---|---|---|---|---|
Total Starch Content | AAC | Amylopectin Content | Total Protein Content | Albumin Content | Globulin Content | Prolamin Content | Glutelin Content | |
Daohuaxiang2 | 88.92 ± 0.06 a | 15.10 ± 0.11 a | 73.80 ± 0.17 c | 6.39 ± 0.06 c | 0.49 ± 0.01 b | 0.64 ± 0.03 b | 0.96 ± 0.02 b | 3.44 ± 0.04 c |
Nangeng46 | 86.10 ± 0.07 b | 9.66 ± 0.09 b | 76.42 ± 0.05 a | 7.21 ± 0.05 b | 0.58 ± 0.03 a | 0.80 ± 0.02 a | 1.09 ± 0.01 a | 3.62 ± 0.05 b |
Nangeng2728 | 84.88 ± 0.04 c | 8.84 ± 0.10 c | 76.02 ± 0.05 b | 7.84 ± 0.06 a | 0.56 ± 0.01 a | 0.76 ± 0.02 a | 1.12 ± 0.02 a | 4.33 ± 0.03 a |
Cultivar | Molecular Weight (Da) | Chain Length Proportion of Amylose (%) | Chain Length Proportion of Amylopectin (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total Starch | Amylose | Amylopectin | 100 < X ≤ 1000 | 1000 < X ≤ 2000 | 2000 < X ≤ 20,000 | Fa (DP6–12) | Fb1 (DP13–24) | Fb2 (DP25–36) | Fb3 (DP37–100) | Average Chain Length | |
Daohuaxiang2 | 3493860 ± 9468 a | 183319 ± 566 a | 5341014 ± 5658 a | 6.23 ± 0.11 a | 3.09 ± 0.03 a | 5.24 ± 0.05 a | 28.00 ± 0.04 b | 44.12 ± 0.01 c | 11.92 ± 0.03 a | 15.96 ± 0.03 a | 21.87 ± 0.04 a |
Nangeng46 | 2221393 ± 7797 b | 167127 ± 366 b | 3091176 ± 5284 b | 4.61 ± 0.03 b | 1.70 ± 0.02 b | 3.19 ± 0.02 b | 30.49 ± 0.02 a | 45.25 ± 0.03 b | 11.65 ± 0.02 b | 12.61 ± 0.03 c | 20.15 ± 0.04 c |
Nangeng2728 | 1975251 ± 6772 c | 167713 ± 713 b | 2815500 ± 5335 c | 4.61 ± 0.01 b | 1.24 ± 0.04 c | 2.19 ± 0.02 c | 24.40 ± 0.01 c | 49.45 ± 0.01 a | 11.65 ± 0.01 b | 14.50 ± 0.01 b | 21.34 ± 0.01 b |
Cultivar | Average Volume | Average Surface Area | 0~2 μm | 2~4 μm | 4~6 μm | 6~8 μm | 8~14 μm |
---|---|---|---|---|---|---|---|
Daohuaxiang2 | 5.853 ± 0.001 a | 3.707 ± 0.001 a | 11.45 ± 0.01 c | 20.15 ± 0.01 c | 27.27 ± 0.01 b | 26.84 ± 0.01 a | 14.34 ± 0.01 a |
Nangeng46 | 4.763 ± 0.001 c | 2.971 ± 0.001 c | 18.98 ± 0.01 a | 27.94 ± 0.01 a | 26.85 ± 0.01 c | 20.20 ± 0.01 c | 6.03 ± 0.01 c |
Nangeng2728 | 4.871 ± 0.001 b | 3.086 ± 0.001 b | 17.41 ± 0.01 b | 27.27 ± 0.02 b | 27.97 ± 0.01 a | 21.19 ± 0.01 b | 6.16 ± 0.01 b |
Cultivar | Crystal Structure of Starch | Thermal Properties | |||||||
---|---|---|---|---|---|---|---|---|---|
Peak Intensity (Counts) | Lamellar Thickness (nm) | Relative Crystallinity (%) | To (°C) | Tp (°C) | Tc (°C) | ΔHg (J/g) | ΔHr (J/g) | %R (%) | |
Daohuaxiang2 | 87.7 ± 1.3 c | 9.42 ± 0.02 a | 28.68 ± 0.15 c | 59.0 ± 0.2 b | 63.3 ± 0.1 c | 69.0 ± 0.1 c | 9.60 ± 0.04 c | 3.49 ± 0.02 b | 36.39 ± 0.13 b |
Nangeng46 | 177.3 ± 0.1 b | 9.09 ± 0.05 b | 34.37 ± 0.28 b | 59.2 ± 0.1 b | 63.7 ± 0.1 b | 71.1 ± 0.1 b | 12.60 ± 0.12 b | 2.49 ± 0.02 c | 19.79 ± 0.02 c |
Nangeng2728 | 213.5 ± 1.1 a | 8.71 ± 0.01 c | 35.67 ± 0.07 a | 62.9 ± 0.1 a | 76.6 ± 0.1 a | 84.7 ± 0.2 a | 16.85 ± 0.07 a | 7.64 ± 0.02 a | 45.34 ± 0.29 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Xu, D.; Ma, Z.; Chen, X.; Zhang, M.; Zhang, C.; Liu, G.; Wei, H.; Zhang, H. Differences in Eating Quality Attributes between Japonica Rice from the Northeast Region and Semiglutinous Japonica Rice from the Yangtze River Delta of China. Foods 2021, 10, 2770. https://doi.org/10.3390/foods10112770
Zhu Y, Xu D, Ma Z, Chen X, Zhang M, Zhang C, Liu G, Wei H, Zhang H. Differences in Eating Quality Attributes between Japonica Rice from the Northeast Region and Semiglutinous Japonica Rice from the Yangtze River Delta of China. Foods. 2021; 10(11):2770. https://doi.org/10.3390/foods10112770
Chicago/Turabian StyleZhu, Ying, Dong Xu, Zhongtao Ma, Xinyi Chen, Mingyue Zhang, Chao Zhang, Guodong Liu, Haiyan Wei, and Hongcheng Zhang. 2021. "Differences in Eating Quality Attributes between Japonica Rice from the Northeast Region and Semiglutinous Japonica Rice from the Yangtze River Delta of China" Foods 10, no. 11: 2770. https://doi.org/10.3390/foods10112770
APA StyleZhu, Y., Xu, D., Ma, Z., Chen, X., Zhang, M., Zhang, C., Liu, G., Wei, H., & Zhang, H. (2021). Differences in Eating Quality Attributes between Japonica Rice from the Northeast Region and Semiglutinous Japonica Rice from the Yangtze River Delta of China. Foods, 10(11), 2770. https://doi.org/10.3390/foods10112770