Storage Stability of Durum Wheat Pasta Enriched with Seaweeds Flours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Pasta Production
2.3. Storage Stability Tests
2.4. Sensory Analysis
2.5. Physicochemical Analysis
2.5.1. Weight Gain
2.5.2. Cooking Loss
2.6. Texture Analysis
2.7. Water Activity
2.8. Pasta Isotherm Data
2.9. Statistical Analysis
3. Results and Discussion
3.1. Water Activity of Pasta
3.2. Cooking Quality
3.2.1. Influence of Storage Conditions over Time
3.2.2. Correlations between Cooking Quality Parameters
3.3. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kill, R.; Turnbull, K. Pasta and Semolina Technology; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780470999363. [Google Scholar]
- Bonomi, F.; D’Egidio, M.G.; Iametti, S.; Marengo, M.; Marti, A.; Pagani, M.A.; Ragg, E.M. Structure-quality relationship in commercial pasta: A molecular glimpse. Food Chem. 2012, 135, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; de Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Fuad, T.; Prabhasankar, P. Role of Ingredients in Pasta Product Quality: A Review on Recent Developments. Crit. Rev. Food Sci. Nutr. 2010, 50, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Doxa Pasta: The Consumption’s Increase during the Lockdown. Available online: https://www.bva-doxa.com/en/pasta-the-consumptions-increase-during-the-lockdown/ (accessed on 17 May 2021).
- Gupta, S.; Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 2011, 12, 600–609. [Google Scholar] [CrossRef]
- Deleris, P.; Nazih, H.; Bard, J.M. Seaweeds in human health. In Seaweed in Health and Disease Prevention.; Fleurence, J., Levine, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 319–367. [Google Scholar]
- Ferreira, R.M.; Ribeiro, A.R.; Patinha, C.; Silva, A.M.S.; Cardoso, S.M.; Costa, R. Water Extraction Kinetics of Bioactive Compounds of Fucus vesiculosus. Molecules 2019, 24, 3408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilusha, R.A.T.; Jayasinghe, J.M.J.K.; Perera, O.D.A.N.; Perera, P.I.P. Development of pasta products with nonconventional ingredients and their effect on selected quality characteristics: A brief overview. Int. J. Food Sci. 2019, 2019, 6750726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duszkiewicz-Reinhard, W.; Khan, K.; Dick, J.W.; Holm, Y. Shelf life stability of spaghetti fortified with legume flours and protein concentrates. Cereal Chem. 1988, 65, 278–281. [Google Scholar]
- Verardo, V.; Ferioli, F.; Riciputi, Y.; Iafelice, G.; Marconi, E.; Caboni, M.F. Evaluation of lipid oxidation in spaghetti pasta enriched with long chain n-3 polyunsaturated fatty acids under different storage conditions. Food Chem. 2009, 114, 472–477. [Google Scholar] [CrossRef]
- Nicoli, M.C. Shelf Life Assessment of Food; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-4600-1. [Google Scholar]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques, 4th ed.; Food Science & Technology; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780849338397. [Google Scholar]
- ISO8589. Sensory Analysis—General Guidance for the Design of Test Rooms; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- D’Egidio, M.G.; Mariani, B.M.; Nardi, S.; Novaro, P.; Cubadda, R. Chemical and technological variables and their relationships: A predictive equation for pasta cooking quality. Cereal Chem. 1990, 67, 275–281. [Google Scholar]
- De Temmerman, J.; Verboven, P.; Delcour, J.A.; Nicolaï, B.; Ramon, H. Drying model for cylindrical pasta shapes using desorption isotherms. J. Food Eng. 2008, 86, 414–421. [Google Scholar] [CrossRef]
- Piringer, O.G.; Baner, A.L. Plastic Packaging: Interactions with Food and Pharmaceuticals; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; ISBN 9783527314553. [Google Scholar]
- European Parliament. ‘Best before’ Date Labels—Protecting Consumers and Limiting Food Waste; European Parliament: Brussels, Belgium, 2015. [Google Scholar]
- FSSAI. Food Safety and Standards Authority of India: Food Safety and Standards Act; FSSAI: New Delhi, India, 2012.
- Fontana, A.J., Jr. D: Minimum Water Activity Limits for Growth of Microorganisms. In Water Activity in Foods; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.P., Eds.; Wiley Online Books; Wiley: Hoboken, NJ, USA, 2020; pp. 571–572. ISBN 9781118765982. [Google Scholar]
- CEN 15251-2007. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; European Committee for Standardization: Brussels, Belgium, 2007. [Google Scholar]
- Gekas, V. Transport Phenomena of Foods and Biological Materials; Routledge: New York, NY, USA, 1992; ISBN 9780203735107. [Google Scholar]
- Bock, J.E.; Connelly, R.K.; Damodaran, S. Impact of Bran Addition on Water Properties and Gluten Secondary Structure in Wheat Flour Doughs Studied by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Cereal Chem. 2013, 90, 377–386. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Madeira, T.; Botelho, G.; Martins, D.; Ferreira, R.M.; Silva, A.M.S.; Cardoso, S.M.; Costa, R.; Ribeiro, A.R.; Madeira, T.; et al. Brown algae Fucus vesiculosus in pasta: Effects on textural quality, cooking properties and sensory traits. 2021. unsubmitted. [Google Scholar]
- Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U. Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem. 2016, 194, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Mercier, S.; Moresoli, C.; Mondor, M.; Villeneuve, S.; Marcos, B. A Meta-Analysis of Enriched Pasta: What Are the Effects of Enrichment and Process Specifications on the Quality Attributes of Pasta? Compr. Rev. Food Sci. Food Saf. 2016, 15, 685–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benhur, D.R.; Bhargavi, G.; Kalpana, K.; Vishala, A.D.; Ganapathy, K.N.; Patil, J.V. Development and standardization of sorghum pasta using extrusion technology. J. Food Sci. Technol. 2015, 52, 6828–6833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, V.; Romano, A.; Masi, P. Does the presence of fibres affect the microstructure and in vitro starch digestibility of commercial Italian pasta? Food Struct. 2020, 24, 100139. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, S.; Nagi, H.P.S.; Dar, B.N. Functional properties of pasta enriched with variable cereal brans. J. Food Sci. Technol. 2012, 49, 467–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gull, A.; Prasad, K.; Kumar, P. Quality Changes in Functional Pasta During Storage in Two Different Packaging Materials: LDPE and BOPP. J. Food Process. Preserv. 2017, 41, 1–7. [Google Scholar] [CrossRef]
- Sánchez-García, F.; Mirzayeva, A.; Roldán, A.; Castro, R.; Palacios, V.; García-Barroso, C.; Durán-Guerrero, E. Evolution of volatile compounds and sensory characteristics of edible green seaweed (Ulva rigida) during storage at different temperatures. J. Sci. Food Agric. 2019, 99, 5475–5482. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sharma, N.; Singh, A.; Singh, B. Stability of iron and vitamin A in pasta enriched with variable plant sources during processing and storage. J. Food Process. Preserv. 2021, 1–15. [Google Scholar]
Month | 5 °C-50% RH | 20 °C-55% RH | 20 °C-65% RH | 30 °C-50% RH | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | * | * | * | * | ||||||
2 | * | * | * | * | ||||||
3 | * | * | * | * | * | * | * | |||
4 | * | * | * | * | * | * | * | |||
5 | * | * | * | * | * | * | * | * | * | * |
6 | * | * | * | * | * | * | * | * | * | * |
M# | M6 | M2 | M4 | M6 | M2 | M4 | M6 | M2 | M4 | M6 |
Pasta | Firmness Raw ×103 (N) | Firmness Cooked (N) | Weight Gain (g/g) | Cooking Loss (g/100 g) |
---|---|---|---|---|
Durum wheat | ||||
Fresh | 2.81 ± 0.86 | 5.36 ± 0.07 b | 2.50 ± 0.04 | 4.26 ± 0.17 |
5 °C-50% RH | 2.80 ± 1.08 | 6.70 ± 0.32 c | 2.55 ± 0.15 | 3.93 ± 0.66 |
20 °C-55% RH | 2.16 ± 0.96 | 5.46 ± 0.43 b | 2.43 ± 0.03 | 3.40 ± 0.05 |
20 °C-65% RH | 2.39 ± 0.79 | 4.89 ± 0.49 ab | 2.87 ± 0.14 | 3.54 ± 0.22 |
30 °C-50% RH | 1.81 ± 0.90 | 4.36 ± 0.73 a | 3.25 ± 0.22 | 4.29 ± 0.24 |
p = 0.163 | p = 0.000 | p = 0.094 * | p = 0.204 * | |
F. vesiculosus | ||||
Fresh | 2.21 ± 1.12 b | 6.10 ± 0.70 b | 2.64 ± 0.03 | 4.89 ± 0.14 |
5 °C-50% RH | 1.09 ± 0.77 ab | 3.72 ± 0.27 a | 3.39 ± 0.05 | 5.68 ± 0.55 |
20 °C-55% RH | 0.83 ± 0.27 ab | 3.96 ± 0.27 a | 2.69 ± 0.08 | 5.97 ± 0.25 |
20 °C-65% RH | 0.55± 0.26 a | 3.60 ± 0.46 a | 3.48 ± 0.40 | 5.71 ± 0.06 |
30 °C-50% RH | 1.31 ± 0.76 ab | 4.28 ± 0.12 a | 2.69 ± 0.05 | 5.27 ± 0.05 |
p = 0.017 * | p = 0.000 * | p = 0.112 * | p = 0.160 * | |
F. vesiculosus extract | ||||
Fresh | 2.05 ± 1.05 | 4.90 ± 0.57 b | 2.95 ± 0.23 | 5.07 ± 0.45 |
5 °C-50% RH | 1.58 ± 0.06 | 4.91 ± 0.49 b | 2.91 ± 0.36 | 5.24 ± 0.01 |
20 °C-55% RH | 1.19 ± 0.38 | 4.87 ± 0.49 b | 2.98 ± 0.03 | 5.08 ± 0.11 |
20 °C-65% RH | 1.20 ± 0.46 | 3.24 ± 0.36 a | 3.03 ± 0.58 | 4.73 ± 0.21 |
30 °C-50% RH | 1.36 ± 0.54 | 3.22 ± 0.18 a | 2.80 ± 0.13 | 5.34 ± 0.16 |
p = 0.116 * | p = 0.000 * | p = 0.861 * | p = 0.114 | |
Ulva rigida | ||||
Fresh | 1.56 ± 1.36 | 5.02 ± 0.75 c | 2.60 ± 0.04 a | 4.23 ± 0.08 |
5 °C-50% RH | 1.43 ± 0.04 | 3.61 ± 0.10 b | 3.17 ± 0.10 bc | 4.62 ± 0.41 |
20 °C-55% RH | 1.67 ± 0.73 | 4.92 ± 0.21 c | 2.88 ± 0.17 ab | 5.11 ± 0.06 |
20 °C-65% RH | 1.75 ± 0.45 | 2.99 ± 0.32 a | 3.44 ± 0.22 c | 4.88 ± 0.42 |
30 °C-50% RH | 1.51 ± 0.42 | 3.54 ± 0.13 b | 2.68 ± 0.03 a | 4.23 ± 0.71 |
p = 0.553 * | p = 0.000 | p = 0.047 * | p = 0.252 * | |
Ulva rigida extract | ||||
Fresh | 1.01 ± 0.99 a | 5.06 ± 0.04 c | 3.08 ± 0.09 | 4.83 ± 0.13 |
5 °C-50% RH | 2.55 ± 0.68 b | 2.99 ± 0.17 a | 2.87 ± 0.26 | 4.14 ± 1.30 |
20 °C-55% RH | 2.06 ± 0.84 b | 4.61 ± 0.18 b | 2.91 ± 0.05 | 4.45 ± 0.49 |
20 °C-65% RH | 1.76 ± 0.65 ab | 3.29 ± 0.23 a | 2.17 ± 0.03 | 3.57 ± 0.89 |
30 °C50% RH | 2.46 ± 0.52 b | 3.09 ± 0.15 a | 2.76 ± 0.39 | 4.37 ± 0.07 |
p = 0.001 | p = 0.000 * | p = 0.211 * | p = 0.249 * |
Firmness Cooked | Mass Gain | Cooking Loss | aw | |
---|---|---|---|---|
Firmness raw | 0.196 ** | 0.034 | −0.088 | −0.296 * |
Firmness cooked | −0.022 | −0.143 | −0.518 ** | |
Mass gain | 0.478 ** | 0.000 | ||
Cooking loss | 0.234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.R.; Botelho, G.; Gaspar, A.; Costa, R. Storage Stability of Durum Wheat Pasta Enriched with Seaweeds Flours. Foods 2021, 10, 2450. https://doi.org/10.3390/foods10102450
Ribeiro AR, Botelho G, Gaspar A, Costa R. Storage Stability of Durum Wheat Pasta Enriched with Seaweeds Flours. Foods. 2021; 10(10):2450. https://doi.org/10.3390/foods10102450
Chicago/Turabian StyleRibeiro, Ana Ramalho, Goreti Botelho, Ana Gaspar, and Rui Costa. 2021. "Storage Stability of Durum Wheat Pasta Enriched with Seaweeds Flours" Foods 10, no. 10: 2450. https://doi.org/10.3390/foods10102450
APA StyleRibeiro, A. R., Botelho, G., Gaspar, A., & Costa, R. (2021). Storage Stability of Durum Wheat Pasta Enriched with Seaweeds Flours. Foods, 10(10), 2450. https://doi.org/10.3390/foods10102450