Buccodental Toxicities Induced by Tyrosine Kinase Inhibitors in Patients Diagnosed with Renal Cell Carcinoma—A Literature Review
Abstract
1. Introduction
2. Materials and Methods
3. Bucco-Dental Toxicities
- (a)
- Mucositis oral/Stomatitis
- (b)
- Dysgeusia
- (c)
- Xerostomia
- (d)
- Dental, periodontal, and bone-related toxicities
- (e)
- Osteonecrosis of the jaw (ONJ)
- (f)
- Glossitis/Geographic tongue
- (g)
- Burning mouth syndrome/Oral dysesthesia
- (h)
- Gingival bleeding
4. General Management Overview of Buccodental Toxicities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TKI(s) | Tyrosine kinase inhibitor(s) |
(m)RCC | (Metastatic) renal cell carcinoma |
FDA | The Food and Drug Administration |
IL-2 | Interleukin-2 |
IFN-α | Interferon alpha |
ICIs | Immune checkpoint inhibitors |
VEGF(R) | Vascular endothelial growth factor (receptor) |
PDGFR | Platelet-derived growth factor receptor |
NCCN | National Comprehensive Cancer Network |
EMA | The European Medicines Agency |
trAEs | Treatment-related adverse events |
mTOR | Mammalian target of rapamycin |
RANKL | Receptor activator of nuclear factor kappa-beta ligand |
BMS | Burning mouth syndrome |
(MR)ONJ | (Medication-related) osteonecrosis of the jaw |
BID | Twice a day |
OD | Once a day |
MeSH | Medical Subject Headings |
CTCAE | Common Terminology Criteria for Adverse Events |
References
- Shyam Sunder, S.; Sharma, U.C.; Pokharel, S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: Pathophysiology, mechanisms and clinical management. Signal. Transduct. Target Ther. 2023, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, C.; Hu, M.I.; Gagel, R.F. Management of medullary thyroid carcinoma. Endocrinol. Metab. Clin. N. Am. 2008, 37, 481–496. [Google Scholar] [CrossRef]
- Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase—Role and significance in Cancer. Int. J. Med. Sci. 2004, 1, 101–115. [Google Scholar] [CrossRef]
- Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 2018, 17, 58. [Google Scholar] [CrossRef]
- Thomson, R.J.; Moshirfar, M.; Ronquillo, Y. Tyrosine Kinase Inhibitors. In StatPearls; Internet; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res. 2023, 187, 106552. [Google Scholar] [CrossRef]
- Piciu, A.; Nemeş, A. Evaluation of prognostic factors for late recurrence in clear cell renal carcinoma: An institutional study. Front. Oncol. 2024, 14, 1446953. [Google Scholar] [CrossRef]
- Nepple, K.G.; Yang, L.; Grub, R.L.; Strope, S.A. Population based analysis of the increasing incidence of kidney cancer in the United States: Evaluation of age specific trends from 1975 to 2006. J. Urol. 2012, 187, 32–38. [Google Scholar] [CrossRef]
- Khandpur, U.; Haile, B.; Makary, M.S. Early-Stage Renal Cell Carcinoma Locoregional Therapies: Current Approaches and Future Directions. Clin. Med. Insights Oncol. 2024, 18, 11795549241285390. [Google Scholar] [CrossRef]
- Vergho, D.C.; Loeser, A.; Kocot, A.; Spahn, M.; Riedmiller, H. Tumor thrombus of inferior vena cava in patients with renal cell carcinoma—Clinical and oncological outcome of 50 patients after surgery. BMC Res. Notes 2012, 5, 5. [Google Scholar] [CrossRef]
- Monda, S.M.; Lui, H.T.; Pratsinis, M.A.; Chandrasekar, T.; Evans, C.; Dall’Era, M.A. The Metastatic Risk of Renal Cell Carcinoma by Primary Tumor Size and Subtype. Eur. Urol. Open Sci. 2023, 52, 137–144. [Google Scholar] [CrossRef]
- Huang, J.J.; Hsieh, J.J. The Therapeutic Landscape of Renal Cell Carcinoma: From the Dark Age to the Golden Age. Semin. Nephrol. 2020, 40, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Pyrhönen, S.; Salminen, E.; Ruutu, M.; Lehtonen, T.; Nurmi, M.; Tammela, T.; Juusela, H.; Rintala, E.; Hietanen, P.; Kellokumpu-Lehtinen, P.L. Prospective randomized trial of interferon alfa-2a plus vinblastine versus vinblastine alone in patients with advanced renal cell cancer. J. Clin. Oncol. 1999, 17, 2859–2867. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Mazumdar, M.; Bacik, J.; Russo, P.; Berg, W.J.; Metz, E.M. Effect of cytokine therapy on survival for patients with advanced renal cell carcinoma. J. Clin. Oncol. 2000, 18, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Pyrhönen, S.O. Systemic therapy in metastatic renal cell carcinoma. Scand. J. Surg. 2004, 93, 156–161. [Google Scholar] [CrossRef]
- Dutcher, J.P.; Flippot, R.; Fallah, J.; Escudier, B. On the Shoulders of Giants: The Evolution of Renal Cell Carcinoma Treatment-Cytokines, Targeted Therapy, and Immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 1–18. [Google Scholar] [CrossRef]
- Comandone, A.; Vana, F.; Comandone, T.; Tucci, M. Antiangiogenic Therapy in Clear Cell Renal Carcinoma (CCRC): Pharmacological Basis and Clinical Results. Cancers 2021, 13, 5896. [Google Scholar] [CrossRef]
- Michaelis, J.; Grabbert, M.; Sigle, A.; Yilmaz, M.; Schlager, D.; Gratzke, C.; Miernik, A.; Schoeb, D.S. Tyrosine Kinase Inhibitors in the Treatment of Metastasised Renal Cell Carcinoma-Future or the Past? Cancers 2022, 14, 3777. [Google Scholar] [CrossRef]
- Tzogani, K.; Skibeli, V.; Westgaard, I.; Dalhus, M.; Thoresen, H.; Slot, K.B.; Damkier, P.; Hofland, K.; Borregaard, J.; Ersbøll, J.; et al. The European Medicines Agency approval of axitinib (Inlyta) for the treatment of advanced renal cell carcinoma after failure of prior treatment with sunitinib or a cytokine: Summary of the scientific assessment of the committee for medicinal products for human use. Oncologist 2015, 20, 196–201. [Google Scholar] [CrossRef]
- Bosma, N.A.; Warkentin, M.T.; Gan, C.L.; Karim, S.; Heng, D.Y.C.; Brenner, D.R.; Lee-Ying, R.M. Efficacy and Safety of First-line Systemic Therapy for Metastatic Renal Cell Carcinoma: A Systematic Review and Network Meta-analysis. Eur. Urol. Open Sci. 2022, 37, 14–26. [Google Scholar] [CrossRef]
- Osanto, S.; van der Hulle, T. Cabozantinib in the treatment of advanced renal cell carcinoma in adults following prior vascular endothelial growth factor targeted therapy: Clinical trial evidence and experience. Ther. Adv. Urol. 2018, 10, 109–123. [Google Scholar] [CrossRef]
- Goodstein, T.; Yang, Y.; Runcie, K.; Srinivasan, R.; Singer, E.A. Two is company, is three a crowd? Triplet therapy, novel molecular targets, and updates on the management of advanced renal cell carcinoma. Curr. Opin. Oncol. 2023, 35, 206–217. [Google Scholar] [CrossRef]
- Zschäbitz, S.; Grüllich, C. Lenvantinib: A Tyrosine Kinase Inhibitor of VEGFR 1-3, FGFR 1-4, PDGFRα, KIT and RET. Recent Results Cancer Res. 2018, 211, 187–198. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Hawkins, R.E.; Wagstaff, J.; Salman, P.; Mardiak, J.; Barrios, C.H.; Zarba, J.J.; Gladkov, O.A.; Lee, E.; Szczylik, C.; et al. A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: Final overall survival results and safety update. Eur. J. Cancer 2013, 49, 1287–1296. [Google Scholar] [CrossRef]
- Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 2006, 407, 597–612. [Google Scholar] [CrossRef]
- Schmid, T.A.; Gore, M.E. Sunitinib in the treatment of metastatic renal cell carcinoma. Ther. Adv. Urol. 2016, 8, 348–371. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Weinstock, C.; Zhang, L.; Fiero, M.H.; Zhao, M.; Zahalka, E.; Ricks, T.K.; Fourie Zirkelbach, J.; Qiu, J.; Yu, J.; et al. FDA Approval Summary: Tivozanib for Relapsed or Refractory Renal Cell Carcinoma. Clin. Cancer Res. 2022, 28, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.S.; Greenlee, A.N.; Matzko, A.; Stein, M.; Naughton, M.T.; Zaramo, T.Z.; Schwendeman, E.J.; Mohammad, S.J.; Diallo, M.; Revan, R.; et al. Intracellular Signaling Pathways Mediating Tyrosine Kinase Inhibitor Cardiotoxicity. Heart Fail. Clin. 2022, 18, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Kamba, T.; McDonald, D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 2007, 96, 1788–1795. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, X.; Zhang, B.; Yan, B.; Wang, L.; Gu, P.; Wang, W.; Wang, H.; Han, B. Tyrosine Kinase Inhibitor-Related Hepatotoxicity in Patients with Advanced Lung Adenocarcinoma: A Real-World Retrospective Study. Cancer Manag. Res. 2020, 12, 3293–3299. [Google Scholar] [CrossRef]
- Chou, J.W.; Cheng, K.S.; Huang, C.W. Sorafenib-induced Acute Pancreatitis: A Case Report and Review of the Literature. Intern. Med. 2016, 55, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Elshimy, G.; Gandhi, A.; Guo, R.; Correa, R. Tyrosine Kinase Inhibitors’ Newly Reported Endocrine Side Effect: Pazopanib-Induced Primary Adrenal Insufficiency in a Patient With Metastatic Renal Cell Cancer. J. Investig. Med. High Impact. Case Rep. 2020, 8, 2324709620936808. [Google Scholar] [CrossRef] [PubMed]
- Sakao, S.; Tatsumi, K. Molecular mechanisms of lung-specific toxicity induced by epidermal growth factor receptor tyrosine kinase inhibitors. Oncol. Lett. 2012, 4, 865–867. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, Q.; Liu, Y.; Wei, J.; Chen, X. Renal adverse reactions of tyrosine kinase inhibitors in the treatment of tumours: A Bayesian network meta-analysis. Front. Pharmacol. 2022, 13, 1023660. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Hu, M.I.; Durand, J.B.; Busaidy, N.L. Challenges associated with tyrosine kinase inhibitor therapy for metastatic thyroid cancer. J. Thyroid Res. 2011, 2011, 985780. [Google Scholar] [CrossRef]
- Mugiya, T.; Mothibe, M.; Khathi, A.; Ngubane, P.; Sibiya, N. Glycaemic abnormalities induced by small molecule tryosine kinase inhibitors: A review. Front. Pharmacol. 2024, 15, 1355171. [Google Scholar] [CrossRef]
- Verzicco, I.; Regolisti, G.; Quaini, F.; Bocchi, P.; Brusasco, I.; Ferrari, M.; Passeri, G.; Cannone, V.; Coghi, P.; Fiaccadori, E.; et al. Electrolyte Disorders Induced by Antineoplastic Drugs. Front. Oncol. 2020, 10, 779. [Google Scholar] [CrossRef]
- Villa, A.; Kuten-Shorrer, M. Pathogenesis of Oral Toxicities Associated with Targeted Therapy and Immunotherapy. Int. J. Mol. Sci. 2023, 24, 8188. [Google Scholar] [CrossRef]
- Yuan, A.; Kurtz, S.L.; Barysauskas, C.M.; Pilotte, A.P.; Wagner, A.J.; Treister, N.S. Oral adverse events in cancer patients treated with VEGFR-directed multitargeted tyrosine kinase inhibitors. Oral Oncol. 2015, 51, 1026–1033. [Google Scholar] [CrossRef]
- Gilabert, M.; Provansal, M.; Cappiello, M.; Walz, Y.; Salem, N.; Tarpin, C.; Brunelle, S.; Thomassin, J.; Gravis, G. Buccodental side effects of sunitinib in patients with metastatic renal cell carcinoma. Br. J. Cancer 2013, 109, 1750–1754. [Google Scholar] [CrossRef]
- Boers-Doets, C.B.; Epstein, J.B.; Raber-Durlacher, J.E.; Ouwerkerk, J.; Logan, R.M.; Brakenhoff, J.A.; Lacouture, M.E.; Gelderblom, H. Oral adverse events associated with tyrosine kinase and mammalian target of rapamycin inhibitors in renal cell carcinoma: A structured literature review. Oncologist 2012, 17, 135–144. [Google Scholar] [CrossRef]
- Dixit, J.; Gupta, N.; Kataki, A.; Roy, P.; Mehra, N.; Kumar, L.; Singh, A.; Malhotra, P.; Gupta, D.; Goyal, A.; et al. Health-related quality of life and its determinants among cancer patients: Evidence from 12,148 patients of Indian database. Health Qual. Life Outcomes 2024, 22, 26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Motzer, R.J.; Escudier, B.; Tomczak, P.; Hutson, T.E.; Michaelson, M.D.; Negrier, S.; Oudard, S.; Gore, M.E.; Tarazi, J.; Hariharan, S.; et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013, 14, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Halabi, S.; Sanford, B.L.; Hahn, O.; Michaelson, M.D.; Walsh, M.K.; Feldman, D.R.; Olencki, T.; Picus, J.; Small, E.J.; et al. Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial. J. Clin. Oncol. 2017, 35, 591–597, Erratum in J. Clin. Oncol. 2017, 35, 3736. https://doi.org/10.1200/JCO.2017.76.3292; Erratum in J. Clin. Oncol. 2018, 36, 521. https://doi.org/10.1200/JCO.2017.77.6526. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.L.; Peltola, K.; et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef]
- Pal, S.K.; Tangen, C.; Thompson, I.M., Jr.; Balzer-Haas, N.; George, D.J.; Heng, D.Y.C.; Shuch, B.; Stein, M.; Tretiakova, M.; Humphrey, P.; et al. A comparison of sunitinib with cabozantinib, crizotinib, and savolitinib for treatment of advanced papillary renal cell carcinoma: A randomised, open-label, phase 2 trial. Lancet 2021, 397, 695–703. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Lee, C.H.; Voss, M.H.; Carlo, M.I.; Chen, Y.B.; Zucker, M.; Knezevic, A.; Lefkowitz, R.A.; Shapnik, N.; Dadoun, C.; Reznik, E.; et al. Phase II Trial of Cabozantinib Plus Nivolumab in Patients With Non-Clear-Cell Renal Cell Carcinoma and Genomic Correlates. J. Clin. Oncol. 2022, 40, 2333–2341. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Glen, H.; Michaelson, M.D.; Molina, A.; Eisen, T.; Jassem, J.; Zolnierek, J.; Maroto, J.P.; Mellado, B.; et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: A randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015, 16, 1473–1482, Erratum in Lancet Oncol. 2016, 17, e270. https://doi.org/10.1016/S1470-2045(16)30233-9; Erratum in Lancet Oncol. 2018, 19, e509. https://doi.org/10.1016/S1470-2045(18)30672-7. [Google Scholar] [CrossRef]
- Lee, C.H.; Shah, A.Y.; Rasco, D.; Rao, A.; Taylor, M.H.; Di Simone, C.; Hsieh, J.J.; Pinto, A.; Shaffer, D.R.; Girones Sarrio, R.; et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): A phase 1b/2 study. Lancet Oncol. 2021, 22, 946–958. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Cella, D.; Reeves, J.; Hawkins, R.; Guo, J.; Nathan, P.; Staehler, M.; de Souza, P.; Merchan, J.R.; et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 2013, 369, 722–731. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Davis, I.D.; Mardiak, J.; Szczylik, C.; Lee, E.; Wagstaff, J.; Barrios, C.H.; Salman, P.; Gladkov, O.A.; Kavina, A.; et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial. J. Clin. Oncol. 2010, 28, 1061–1068. [Google Scholar] [CrossRef]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Staehler, M.; Negrier, S.; Chevreau, C.; Desai, A.A.; Rolland, F.; et al. Sorafenib for treatment of renal cell carcinoma: Final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 2009, 27, 3312–3318. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef]
- Rini, B.I.; Pal, S.K.; Escudier, B.J.; Atkins, M.B.; Hutson, T.E.; Porta, C.; Verzoni, E.; Needle, M.N.; McDermott, D.F. Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): A phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol. 2020, 21, 95–104. [Google Scholar] [CrossRef]
- Arena, C.; Troiano, G.; De Lillo, A.; Testa, N.F.; Lo Muzio, L. Stomatitis and VEGFR-Tyrosine Kinase Inhibitors (VR-TKIs): A Review of Current Literature in 4369 Patients. Biomed. Res. Int. 2018, 2018, 5035217. [Google Scholar] [CrossRef]
- Milia, E.; Sotgiu, M.A.; Spano, G.; Filigheddu, E.; Gallusi, G.; Campanella, V. Recurrent aphthous stomatitis (RAS): Guideline for differential diagnosis and management. Eur. J. Paediatr. Dent. 2022, 23, 73–78. [Google Scholar] [CrossRef]
- Dietrich, E.; Antoniades, K. Molecularly targeted drugs for the treatment of cancer: Oral complications and pathophysiology. Hippokratia 2012, 16, 196–199. [Google Scholar]
- Schmidinger, M. Understanding and managing toxicities of vascular endothelial growth factor (VEGF) inhibitors. EJC Suppl. 2013, 11, 172–191. [Google Scholar] [CrossRef]
- Heckmann, S.M.; Hujoel, P.; Habiger, S.; Friess, W.; Wichmann, M.; Heckmann, J.G.; Hummel, T. Zinc gluconate in the treatment of dysgeusia—A randomized clinical trial. J. Dent. Res. 2005, 84, 35–38, Erratum in J. Dent. Res. 2005, 84, 382. [Google Scholar] [CrossRef]
- Mainland, J.D.; Barlow, L.A.; Munger, S.D.; Millar, S.E.; Vergara, M.N.; Jiang, P.; Schwob, J.E.; Goldstein, B.J.; Boye, S.E.; Martens, J.R.; et al. Identifying Treatments for Taste and Smell Disorders: Gaps and Opportunities. Chem. Senses 2020, 45, 493–502. [Google Scholar] [CrossRef]
- Nolden, A.A.; Hwang, L.D.; Boltong, A.; Reed, D.R. Chemosensory Changes from Cancer Treatment and Their Effects on Patients’ Food Behavior: A Scoping Review. Nutrients 2019, 11, 2285. [Google Scholar] [CrossRef]
- Pellegrini, M.; Merlo, F.D.; Agnello, E.; Monge, T.; Devecchi, A.; Casalone, V.; Montemurro, F.; Ghigo, E.; Sapino, A.; Bo, S. Dysgeusia in Patients with Breast Cancer Treated with Chemotherapy—A Narrative Review. Nutrients 2023, 15, 226. [Google Scholar] [CrossRef]
- Pombo, F.; Seabra, C.; Sá, A.J.; Ferreira, I. Chemotherapy-Induced Dysgeusia and Its Perverse Consequences: A Case Report. Cureus 2022, 14, e27908. [Google Scholar] [CrossRef]
- van der Werf, A.; Rovithi, M.; Langius, J.A.E.; de van der Schueren, M.A.E.; Verheul, H.M.W. Insight in taste alterations during treatment with protein kinase inhibitors. Eur. J. Cancer 2017, 86, 125–134. [Google Scholar] [CrossRef]
- Fu, Z.H.; Zhao, C.; Wang, Y.; Zhang, L.; Wang, L. Pharmacovigilance imbalance analysis of VEGFR-TKI-related taste and smell disorders. Sci. Rep. 2025, 15, 3118. [Google Scholar] [CrossRef]
- Góra-Kupilas, K.; Jośko, J. The neuroprotective function of vascular endothelial growth factor (VEGF). Folia Neuropathol. 2005, 43, 31–39. [Google Scholar]
- Walsh, M.; Fagan, N.; Davies, A. Xerostomia in patients with advanced cancer: A scoping review of clinical features and complications. BMC Palliat. Care 2023, 22, 178. [Google Scholar] [CrossRef]
- Roblegg, E.; Coughran, A.; Sirjani, D. Saliva: An all-rounder of our body. Eur. J. Pharm Biopharm. 2019, 142, 133–141. [Google Scholar] [CrossRef]
- Davies, A.N.; Broadley, K.; Beighton, D. Xerostomia in patients with advanced cancer. J. Pain Symptom Manag. 2001, 22, 820–825. [Google Scholar] [CrossRef]
- Park, B.; Noh, H.; Choi, D.J. Herbal Medicine for Xerostomia in Cancer Patients: A Systematic Review of Randomized Controlled Trials. Integr. Cancer Ther. 2018, 17, 179–191. [Google Scholar] [CrossRef]
- Choo, P.J.; Taing, M.W.; Teoh, L. A retrospective study of drugs associated with xerostomia from the Australian Database of Adverse Event Notifications. Int. J. Pharm. Pract. 2022, 30, 548–553. [Google Scholar] [CrossRef]
- Chmieliauskaite, M.; Stojanov, I.; Saraghi, M.; Pinto, A. Oral adverse events associated with targeted cancer therapies. Gen. Dent. 2018, 66, 26–31. [Google Scholar]
- Xu, D.; Zhu, H.; Wu, M. Disproportionality analysis of drug-induced dry mouth using data from the United States food and drug administration adverse event reporting system database. Heliyon 2024, 10, e38561. [Google Scholar] [CrossRef]
- Chalmers, J.M.; King, P.L.; Spencer, A.J.; Wright, F.A.; Carter, K.D. The oral health assessment tool—Validity and reliability. Aust. Dent. J. 2005, 50, 191–199. [Google Scholar] [CrossRef]
- Al-Jandan, B.; Marei, H.F.; Abuohashish, H.; Zakaria, O.; Al-Mahalawy, H. Effects of sunitinib targeted chemotherapy on the osseointegration of titanium implants. Biomed. Pharmacother. 2018, 100, 433–440. [Google Scholar] [CrossRef]
- Aleman, J.O.; Farooki, A.; Girota, M. Effects of tyrosine kinase inhibition on bone metabolism: Untargeted consequences of targeted therapies. Endocr. Relat. Cancer 2014, 21, R247–R259. [Google Scholar] [CrossRef]
- Ratzkowski, B.; Koth, V.S.; Azambuja, A.A.; Salum, F.G.; de Figueiredo, M.A.Z.; Cherubini, K. Effect of tyrosine kinase inhibitor sunitinib on tissue repair at tooth extraction sites. Oral Dis. 2023, 29, 1070–1079. [Google Scholar] [CrossRef]
- Alam, M.K.; Awawdeh, M.; Khanagar, S.B.; Aboelmaaty, W.; Abutayyem, H.; Alswairki, H.J.; Alfawzan, A.A.; Hajeer, M.Y. A Systematic Review and Meta-Analysis of the Impact of Cancer and Its Treatment Protocol on the Success of Orthodontic Treatment. Cancers 2023, 15, 5387. [Google Scholar] [CrossRef] [PubMed]
- Bunta, O.; Festila, D.; Muresan, V.; Coloși, T.; Stan, O.P.; Unguresan, M.L.; Baciut, M. Mathematical Modeling and Digital Simulation of Teeth Dynamics for the Approximation of Orthodontic Treatment Duration. Appl. Sci. 2023, 13, 5932. [Google Scholar] [CrossRef]
- Ahdi, H.S.; Wichelmann, T.A.; Pandravada, S.; Ehrenpreis, E.D. Medication-induced osteonecrosis of the jaw: A review of cases from the Food and Drug Administration Adverse Event Reporting System (FAERS). BMC Pharmacol. Toxicol. 2023, 24, 15. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Rhee, Y.; Kwon, Y.D.; Kwon, T.G.; Lee, J.K.; Kim, D.Y. Medication Related Osteonecrosis of the Jaw: 2015 Position Statement of the Korean Society for Bone and Mineral Research and the Korean Association of Oral and Maxillofacial Surgeons. J. Bone Metab. 2015, 22, 151–165. [Google Scholar] [CrossRef]
- Nifosì, A.F.; Zuccarello, M.; Nifosì, L.; Hervas Saus, V.; Nifosì, G. Osteonecrosis of the jaw in the era of targeted therapy and immunotherapy in oncology. J. Korean Assoc. Oral Maxillofac. Surg. 2019, 45, 3–8. [Google Scholar] [CrossRef]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. Diagnosis and management of osteonecrosis of the jaw: A systematic review and international consensus. J. Bone Miner. Res. 2015, 30, 3–23. [Google Scholar] [CrossRef]
- Lončar Brzak, B.; Horvat Aleksijević, L.; Vindiš, E.; Kordić, I.; Granić, M.; Vidović Juras, D.; Andabak Rogulj, A. Osteonecrosis of the Jaw. Dent. J. 2023, 11, 23. [Google Scholar] [CrossRef]
- Mian, M.; Sreedharan, S.; Kumar, R. Osteonecrosis of the jaws associated with protein kinase inhibitors: A systematic review. Oral Maxillofac. Surg. 2021, 25, 149–158. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R.; Wang, S.; Guo, Q.; Yin, D.; Song, Y.; She, X.; Wang, X.; Duan, J. Osteonecrosis of the jaw in patients with clear cell renal cell carcinoma treated with targeted agents: A case series and large-scale pharmacovigilance analysis. Front. Pharmacol. 2024, 15, 1309148. [Google Scholar] [CrossRef]
- Konarski, W.; Poboży, T.; Konarska, K.; Śliwczyński, A.; Kotela, I.; Krakowiak, J. Exploring the Impact of Novel Anti-Cancer Therapies on Jaw Osteonecrosis and Other Bones: A Comprehensive Review. J. Clin. Med. 2024, 13, 1889. [Google Scholar] [CrossRef] [PubMed]
- Fusco, V.; Porta, C.; Saia, G.; Paglino, C.; Bettini, G.; Scoletta, M.; Bonacina, R.; Vescovi, P.; Merigo, E.; Lo Re, G.; et al. Osteonecrosis of the Jaw in Patients With Metastatic Renal Cell Cancer Treated With Bisphosphonates and Targeted Agents: Results of an Italian Multicenter Study and Review of the Literature. Clin. Genitourin. Cancer 2015, 13, 287–294. [Google Scholar] [CrossRef]
- Prasanth, V.J.; Singh, A. Geographic tongue. CMAJ 2021, 193, E1424. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.; Roman-Sainz, J.; Silvestre-Torner, N.; Tabbara Carrascosa, S. Bevacizumab-Induced Geographic Tongue. Dermatol. Pract. Concept. 2021, 11, e2021043. [Google Scholar] [CrossRef] [PubMed]
- Picciani, B.L.; Domingos, T.A.; Teixeira-Souza, T.; de Carla Batista dos Santos, V.; Gonzaga, H.F.; Cardoso-Oliveira, J.; Gripp, A.C.; Dias, E.P.; Carneiro, S. Geographic tongue and psoriasis: Clinical, histopathological, immunohistochemical and genetic correlation—A literature review. An. Bras. Dermatol. 2016, 91, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Shareef, S.; Ettefagh, L. Geographic Tongue; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sarruf, M.B.J.M.; Quinelato, V.; Sarruf, G.J.M.; Oliveira, H.E.; Calasans-Maia, J.A.; Quinelato, H.; Aguiar, T.; Casado, P.L.; Cavalcante, L.M.A. Stress as worsening of the signs and symptoms of the geographic tongue during the COVID-19 pandemic: A pilot study. BMC Oral Health 2022, 22, 565. [Google Scholar] [CrossRef]
- Hubiche, T.; Valenza, B.; Chevreau, C.; Fricain, J.C.; Del Giudice, P.; Sibaud, V. Geographic tongue induced by angiogenesis inhibitors. Oncologist 2013, 18, e16–e17. [Google Scholar] [CrossRef]
- Sundar, S.; Burge, F. Geographical tongue induced by axitinib. BMJ Case Rep. 2015, 2015, bcr2015211318. [Google Scholar] [CrossRef]
- Gilmore, G.; Qamar, S.; Chaudhary, U.B. Geographic tongue (benign migratory glossitis) in a patient treated with Pazopanib for metastatic renal cell carcinoma. Cancer Treat. Commun. 2016, 6, 1–3. [Google Scholar] [CrossRef]
- Adamo, D.; Spagnuolo, G. Burning Mouth Syndrome: An Overview and Future Perspectives. Int. J. Environ. Res. Public Health 2022, 20, 682. [Google Scholar] [CrossRef]
- Kwong, K.C.L.; Yeoh, S.C.; Balasubramaniam, R. Is oral dysaesthesia a somatic symptom disorder? J. Oral Pathol. Med. 2020, 49, 499–504. [Google Scholar] [CrossRef]
- Reyad, A.A.; Mishriky, R.; Girgis, E. Pharmacological and non-pharmacological management of burning mouth syndrome: A systematic review. Dent. Med. Probl. 2020, 57, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, W.; Yan, J.; Noma, N.; Young, A.; Yan, Z. Worldwide prevalence estimates of burning mouth syndrome: A systematic review and meta-analysis. Oral Dis. 2022, 28, 1431–1440. [Google Scholar] [CrossRef]
- Kamala, K.A.; Sankethguddad, S.; Sujith, S.G.; Tantradi, P. Burning Mouth Syndrome. Indian J. Palliat. Care 2016, 22, 74–79. [Google Scholar] [CrossRef]
- Ritchie, A.; Kramer, J.M. Recent advances in the etiology and treatment of burning mouth syndrome. J. Dent. Res. 2018, 97, 1193–1199. [Google Scholar] [CrossRef]
- Galli, F.; Lodi, G.; Sardella, A.; Vegni, E. Role of psychological factors in burning mouth syndrome: A systematic review and meta-analysis. Cephalalgia 2017, 37, 265–277. [Google Scholar] [CrossRef]
- Kollmannsberger, C.; Bjarnason, G.; Burnett, P.; Creel, P.; Davis, M.; Dawson, N.; Feldman, D.; George, S.; Hershman, J.; Lechner, T.; et al. Sunitinib in metastatic renal cell carcinoma: Recommendations for management of noncardiovascular toxicities. Oncologist 2011, 16, 543–553. [Google Scholar] [CrossRef]
- Murakami, S.; Mealey, B.L.; Mariotti, A.; Chapple, I.L.C. Dental plaque-induced gingival conditions. J. Periodontol. 2018, 89, S17–S27. [Google Scholar] [CrossRef]
- Veynachter, T.; Orti, V.; Moulis, E.; Rousseau, H.; Thilly, N.; Anagnostou, F.; Jeanne, S.; Bisson, C. Prevalence and Associated Factors of Self-Reported Gingival Bleeding: A Multicenter Study in France. Int. J. Environ. Res. Public Health 2020, 17, 8563. [Google Scholar] [CrossRef]
- Sridharan, K.; Sivaramakrishnan, G. Drug-associated gingival disorders: A retrospective pharmacovigilance assessment using disproportionality analysis. BDJ Open 2025, 11, 24. [Google Scholar] [CrossRef]
- Nicolatou-Galitis, O.; Migkou, M.; Psyrri, A.; Bamias, A.; Pectasides, D.; Economopoulos, T.; Raber-Durlacher, J.E.; Dimitriadis, G.; Dimopoulos, M.A. Gingival bleeding and jaw bone necrosis in patients with metastatic renal cell carcinoma receiving sunitinib: Report of 2 cases with clinical implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 234–238. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Vardas, E.; Tziveleka, S.; Georgaki, M.; Kouri, M.; Katoumas, K.; Piperi, E.; Nikitakis, N.G. Oral Side Effects in Patients with Metastatic Renal Cell Carcinoma Receiving the Antiangiogenic Agent Pazopanib-Report of Three Cases. Dent. J. 2022, 10, 232. [Google Scholar] [CrossRef]
- Verheul, H.M.; Pinedo, H.M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat. Rev. Cancer 2007, 7, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Bhojani, N.; Jeldres, C.; Patard, J.J.; Perrotte, P.; Suardi, N.; Hutterer, G.; Patenaude, F.; Oudard, S.; Karakiewicz, P.I. Toxicities associated with the administration of sorafenib, sunitinib, and temsirolimus and their management in patients with metastatic renal cell carcinoma. Eur. Urol. 2008, 53, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Garber, G.E. Treatment of oral Candida mucositis infections. Drugs 1994, 47, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Lacouture, M.; Sibaud, V. Toxic Side Effects of Targeted Therapies and Immunotherapies Affecting the Skin, Oral Mucosa, Hair, and Nails. Am. J. Clin. Dermatol. 2018, 19, 31–39. [Google Scholar] [CrossRef]
- Farag, A.M.; Carey, B.; Albuquerque, R. Oral dysaesthesia: A special focus on aetiopathogenesis, clinical diagnostics and treatment modalities. Br. Dent. J. 2024, 236, 275–278. [Google Scholar] [CrossRef]
- Togni, L.; Mascitti, M.; Vignigni, A.; Alia, S.; Sartini, D.; Barlattani, A.; Emanuelli, M.; Santarelli, A. Treatment-Related Dysgeusia in Oral and Oropharyngeal Cancer: A Comprehensive Review. Nutrients 2021, 13, 3325. [Google Scholar] [CrossRef]
- Ito, K.; Izumi, N.; Funayama, S.; Nohno, K.; Katsura, K.; Kaneko, N.; Inoue, M. Characteristics of medication-induced xerostomia and effect of treatment. PLoS ONE 2023, 18, e0280224. [Google Scholar] [CrossRef]
- Nicolatou-Galitis, O.; Schiødt, M.; Mendes, R.A.; Ripamonti, C.; Hope, S.; Drudge-Coates, L.; Niepel, D.; Van den Wyngaert, T. Medication-related osteonecrosis of the jaw: Definition and best practice for prevention, diagnosis, and treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 117–135. [Google Scholar] [CrossRef]
- Goker, F.; Grecchi, E.; Grecchi, F.; Francetti, L.; Del Fabbro, M. Treatment of medication-related osteonecrosis of the jaw (MRONJ). A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2662–2673. [Google Scholar] [CrossRef]
- Tan, H.L.; Smith, J.G.; Hoffmann, J.; Renton, T. A systematic review of treatment for patients with burning mouth syndrome. Cephalalgia 2022, 42, 128–161. [Google Scholar] [CrossRef]
- Randall, D.A.; Wilson Westmark, N.L.; Neville, B.W. Common Oral Lesions. Am. Fam. Physician 2022, 105, 369–376. [Google Scholar]
Drug Name | Targets | Drug Associations | Year of Approval by FDA/EMA | Form of Administration | Dosage | Reference |
---|---|---|---|---|---|---|
Axitinib | VEGFR-1, VEGFR-2, VEGFR-3, PDGFR, cKIT | Monotherapy | 2012/2012 | oral | 5 mg BID | [19,20] |
Pembrolizumab | 2019/2019 | |||||
Avelumab | 2019/2019 | |||||
Cabozantinib | MET, VEGFR-1, VEGFR-2, VEGFR-3, AXL, RET, ROS1, TYRO3, MER, KIT, TRKB, FLT3, TIE2 | Monotherapy | 2012/2016 | oral | 60 mg OD | [21,22] |
Nivolumab | 2021/2021 | 40 mg OD | ||||
Lenvatinib | VEGFR-1, VEGFR-2, VEGFR-3, FGFR-1, FGFR-2, FGFR-3, FGFR-4, PDGFR-α, cKIT, RET | Pembrolizumab | 2021/2021 | oral | 20 mg OD | [23,24] |
Everolimus | 2016/2016 | 18 mg OD | ||||
Pazopanib | VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-α, PDGFR-β, cKIT | - | 2009/2010 | oral | 800 mg OD | [25] |
Sorafenib | VEGFR-2, VEGFR-3, PDGFR-β, CRAF, BRAF, V600E BRAF, cKIT, FLT3 | - | 2005/2006 | oral | 400 mg BID | [26] |
Sunitinib | VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-α, PDGFR-β, cKIT, FLT3, CSF1R, RET | - | 2006/2007 | oral | 50 mg OD | [27] |
4 weeks on/2 weeks off | ||||||
Tivozanib | VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-β, cKIT | - | 2021/2017 | oral | 1.34 mg OD | [28] |
3 weeks on/1 week off |
Toxicity (CTCAE Toxicity) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stomatitis (Mucositis Oral) | Dysgeusia (Dysgeusia) | Xerostomia (Dry Mouth) | Trial | |||||||||||
Drug Name | Drug Association | Sample Size per Arm | CTCAE Version | Any Grade (%) | Grade 3–4 Toxicity (%) | Any Grade (%) | Grade 3–4 Toxicity (%) | Any Grade (%) | Grade 3–4 Toxicity (%) | Trial Name | Time Frame | Clinical Cutoff | Trial Phase | Ref. |
Axitinib | Monotherapy | n = 359 | 3.0 | 15% | 1% | 11% | 0% | N/A | N/A | AXIS | 15 September 2008–23 July 2010 | 1 November 2011 | 3 | [44] |
Avelumab | n = 434 | 4.03 | 25.8% | 1.8% | 13.1% | 0% | N/A | N/A | JAVELIN Renal 101 | 29 March 2016–19 December 2017 | 20 June 2018 | 3 | [45] | |
Pembrolizumab | n = 429 | 4.0 | 15.6% | 0.7% | 11.0% | 0.2% | N/A | N/A | KEYNOTE-426 | 24 October 2016–24 January 2018 | - | 3 | [46] | |
Cabozantinib | Monotherapy | n = 79 | 4.0 | 35.9% | 5.1% | 41% | 0% | N/A | N/A | CABOSUN | July 2013–April 2015 | 11 April 2016 | 2 | [47] |
n = 331 | 4.0 | 22% | 2% | 24% | 0% | N/A | N/A | METEOR | August 2013–November 2014 | 22 May 2015 | 3 | [48] | ||
n = 44 | 4.0 | 37% | 2% | N/A | N/A | N/A | N/A | SWOG 1500 | April 2016–December 2019 | 16 October 2020 | 2 | [49] | ||
Nivolumab | n = 320 | 4.0 | 16.9% | 2.5% | 23.8% | 0% | N/A | N/A | CheckMate 9ER | September 2017–May 2019 | 30 March 2020 | 3 | [50] | |
n = 47 | - | 28% | 0% | N/A | N/A | 36% | 0% | - | 28 August 2018–20 October 2020 | 20 January 2021 | 2 | [51] | ||
Lenvatinib | Monotherapy | n = 52 | 4.0 | 23% | 2% | N/A | N/A | 12% | 0% | - | 16 March 2012–19 June 2013 | 10 December 2014 | 3 | [52] |
Pembrolizumab | n = 352 | 4.03 | 34.7% | 1.7% | 12.2% | 0.3% | N/A | N/A | CLEAR | 13 October 2016–24 July 2019 | 28 August 2020 | 3 | [24] | |
n = 145 | 4.03 | 37% | 0% | 13% | 0% | 12% | 0% | KEYNOTE-146 | 21 July 2015–16 October 2019 | 18 August 2020 | 1b/2 | [53] | ||
Everolimus | n = 355 | 4.03 | 47.6% | 6.2% | 16.6% | 0% | N/A | N/A | CLEAR | 13 October 2016–24 July 2019 | 28 August 2020 | 3 | [24] | |
n = 51 | 4.0 | 29% | 0% | N/A | N/A | 4% | 0% | - | 16 March 2012–19 June 2013 | 10 December 2014 | 2 | [52] | ||
Pazopanib | Monotherapy | n = 554 | 3.0 | 14% | 1% | 26% | <1% | N/A | N/A | COMPARZ | August 2008–September 2011 | May 2012 | 3 | [54] |
n = 290 | 3 | 9% | <1% | N/A | N/A | N/A | N/A | VEG105192 | April 2006–April 2007 | 15 March 2010 | 3 | [25,55] | ||
Sorafenib | Monotherapy | n = 452 | - | 5% | 0% | N/A | N/A | N/A | N/A | TARGET | - | September 2006 | 3 | [56] |
n = 355 | 3.0 | 12% | <0.5% | 8% | 0% | N/A | N/A | AXIS | 15 September 2008–23 July 2010 | 1 November 2011 | 3 | [43] | ||
Sunitinib | Monotherapy | n = 375 | 3.0 | 25% | 1% | N/A | N/A | 11% | 0% | - | August 2004–October 2005 | 15 September 2005 | 3 | [57] |
Tivozanib | Monotherapy | n = 173 | 4.03 | 18% | 2% | N/A | N/A | N/A | N/A | TIVO-3 | 24 May 2016–14 August 2017 | 4 October 2018 | 3 | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemeș, A.; Voskuil-Galos, D.; Bunta, O. Buccodental Toxicities Induced by Tyrosine Kinase Inhibitors in Patients Diagnosed with Renal Cell Carcinoma—A Literature Review. Dent. J. 2025, 13, 439. https://doi.org/10.3390/dj13100439
Nemeș A, Voskuil-Galos D, Bunta O. Buccodental Toxicities Induced by Tyrosine Kinase Inhibitors in Patients Diagnosed with Renal Cell Carcinoma—A Literature Review. Dentistry Journal. 2025; 13(10):439. https://doi.org/10.3390/dj13100439
Chicago/Turabian StyleNemeș, Adina, Diana Voskuil-Galos, and Olimpia Bunta. 2025. "Buccodental Toxicities Induced by Tyrosine Kinase Inhibitors in Patients Diagnosed with Renal Cell Carcinoma—A Literature Review" Dentistry Journal 13, no. 10: 439. https://doi.org/10.3390/dj13100439
APA StyleNemeș, A., Voskuil-Galos, D., & Bunta, O. (2025). Buccodental Toxicities Induced by Tyrosine Kinase Inhibitors in Patients Diagnosed with Renal Cell Carcinoma—A Literature Review. Dentistry Journal, 13(10), 439. https://doi.org/10.3390/dj13100439