Next Article in Journal
Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy
Next Article in Special Issue
Syntheses, Structures, and Catalytic Hydrocarbon Oxidation Properties of N-Heterocycle-Sulfonated Schiff Base Copper(II) Complexes
Previous Article in Journal
A Computational Study of AlF3 and ACF Surfaces
Previous Article in Special Issue
Hydrogenase Biomimetics with Redox-Active Ligands: Synthesis, Structure, and Electrocatalytic Studies on [Fe2(CO)42-dppn)(µ-edt)] (edt = Ethanedithiolate; dppn = 1,8-bis(Diphenylphosphino)Naphthalene)
Open AccessArticle

Trapping of an Heterometallic Unsaturated Hydride: Structure and Properties of the Ammonia Complex [MoMnCp(μ-H)(μ-PPh2)(CO)5(NH3)]

Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
*
Authors to whom correspondence should be addressed.
Inorganics 2018, 6(4), 125; https://doi.org/10.3390/inorganics6040125
Received: 15 October 2018 / Revised: 9 November 2018 / Accepted: 15 November 2018 / Published: 24 November 2018
(This article belongs to the Special Issue Binuclear Complexes)
Complexes displaying multiple bonds between different metal atoms have considerable synthetic potential because of the combination of the high electronic and coordinative unsaturation associated to multiple bonds with the intrinsic polarity of heterometallic bonds but their number is scarce and its chemistry has been relatively little explored. In a preliminary study, our attempted synthesis of the unsaturated hydrides [MoMCp(μ-H)(μ-PR2)(CO)5] from anions [MoMCp(μ-PR2)(CO)5] and (NH4)PF6 yielded instead the ammonia complexes [MoMCp(μ-H)(μ-PR2)(CO)5(NH3)] (M = Mn, R = Ph; M = Re, R = Cy). We have now examined the structure and behaviour of the MoMn complex (Mo–Mn = 3.087(3) Å) and found that it easily dissociates NH3 (this requiring some 40 kJ/mol, according to DFT calculations), to yield the undetectable unsaturated hydride [MoMnCp(μ-H)(μ-PPh2)(CO)5] (computed Mo–Mn = 2.796 Å), the latter readily adding simple donors L such as CNR (R = Xyl, p-C6H4OMe) and P(OMe)3, to give the corresponding electron-precise derivatives [MoMnCp(μ-H)(μ-PPh2)(CO)5(L)]. Thus the ammonia complex eventually behaves as a synthetic equivalent of the unsaturated hydride [MoMnCp(μ-H)(μ-PPh2)(CO)5]. The isocyanide derivatives retained the stereochemistry of the parent complex (Mo–Mn = 3.0770(4) Å when R = Xyl) but a carbonyl rearrangement takes place in the reaction with phosphite to leave the entering ligand trans to the PPh2 group, a position more favoured on steric grounds. View Full-Text
Keywords: metal–metal multiple bonds; heterometallic complexes; hydride complexes; binuclear carbonyl complexes; density functional theory calculations metal–metal multiple bonds; heterometallic complexes; hydride complexes; binuclear carbonyl complexes; density functional theory calculations
Show Figures

Graphical abstract

MDPI and ACS Style

Alvarez, M.A.; García-Vivó, D.; Huergo, E.; Ruiz, M.A. Trapping of an Heterometallic Unsaturated Hydride: Structure and Properties of the Ammonia Complex [MoMnCp(μ-H)(μ-PPh2)(CO)5(NH3)]. Inorganics 2018, 6, 125.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop