Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of MXene
2.3. Synthesis of eNC/MXene
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Characterization of FeNC/MXene
3.2. Electrochemical Properties of FeNC/MXene
3.3. Stability and Durability of FeNC/MXene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; He, H.; Cao, H.; Sun, S.; Diao, W.; Gao, D.; Lu, P.; Zhang, S.; Guo, Z.; Li, M.; et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 2019, 240, 112–121. [Google Scholar] [CrossRef]
- Eftekhari, A.; Fang, B. Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int. J. Hydrogen Energy 2017, 42, 25143–25165. [Google Scholar] [CrossRef]
- Wang, X.; Yu, M.; Feng, X. Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis. eScience 2023, 3, 100141. [Google Scholar] [CrossRef]
- Yang, X.; Lin, L.; Guo, X.; Zhang, S. Design of Multifunctional Electrocatalysts for ORR/OER/HER/HOR: Janus Makes Difference. Small 2024, 20, e2404000. [Google Scholar] [CrossRef]
- Yang, Y.; Li, P.; Zheng, X.; Sun, W.; Dou, S.X.; Ma, T.; Pan, H. Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 2022, 51, 9620–9693. [Google Scholar] [CrossRef]
- Zeng, Q.; Chang, S.; Wang, M.; Li, M.; Deng, Q.; Xiong, Z.; Zhou, B.; Liu, Y. Highly-active, metal-free, carbon-based ORR cathode for efficient organics removal and electricity generation in a PFC system. Chin. Chem. Lett. 2021, 32, 2212–2216. [Google Scholar] [CrossRef]
- Bhoyate, S.D.; Kim, J.; de Souza, F.M.; Lin, J.; Lee, E.; Kumar, A.; Gupta, R.K. Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coord. Chem. Rev. 2023, 474, 214854. [Google Scholar] [CrossRef]
- Chen, D.; Yuan, J.; Zhang, J.; Li, G.; Tian, L.; Wang, Z.; Hu, J.; Zhang, Y.; Li, C.; Yu, J.; et al. Construction of atom-scale Co/Fe/Ni M-N-C active sites within nitrogen-doped carbon spheres for high-performance bifunctional oxygen catalysts in rechargeable zinc-air batteries. J. Energy Storage 2024, 101, 113772. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, L.; Shen, Y. Activity Origin and Catalytic Mechanism of the M–N–C Catalysts for the Oxygen Reduction Reaction. ACS Mater. Lett. 2024, 6, 2858–2887. [Google Scholar] [CrossRef]
- Liu, J.; Wan, X.; Liu, S.; Liu, X.; Zheng, L.; Yu, R.; Shui, J. Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements. Adv. Mater. 2021, 33, e2103600. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Zha, S.; Chu, Y.; Pan, L.; Wu, M.; Liu, C.; Wang, W.; Mitsuzaki, N.; Chen, Z. Active sites identification and engineering of M-N-C electrocatalysts toward oxygen reduction reaction. Int. J. Hydrogen Energy 2024, 51, 1110–1127. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y.; Zhu, S.; Zheng, L.; Cui, Z.; Li, Z.; Wu, S.; Ma, L.; Liang, Y. Highly durable Cu–N–C active sites towards efficient oxygen reduction for zinc-air battery: Carbon matrix effect, reaction mechanism and pathways. J. Alloys Compd. 2021, 857, 158321. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Huang, B.; Wang, P.; Pei, Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). J. Mater. Chem. A 2019, 7, 24583–24593. [Google Scholar] [CrossRef]
- Wan, X.; Liu, Q.; Liu, J.; Liu, S.; Liu, X.; Zheng, L.; Shang, J.; Yu, R.; Shui, J. Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nat. Commun. 2022, 13, 2963. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Wang, X.; Xu, J.; Yang, J.; Zeng, W.; Zhang, Y.; Huang, G.; Wang, J.; Pan, F. Prussian Blue Analogue-Derived Bimetallic CoFe@NC as Effective and Extremely Stable Oxygen Reduction Electrocatalysts for Mg-Air Battery. ACS Appl. Energy Mater. 2022, 5, 12272–12282. [Google Scholar] [CrossRef]
- Guo, S.; Lian, J.; Zhao, J.; Zhang, Y.; Wang, X. Se Atom Doping Enhances the Catalytic Activity of Co@NC for Oxygen Reduction Reaction. Energy Technol. 2023, 11, 2300205. [Google Scholar] [CrossRef]
- Wang, H.; Cao, L.; Feng, Y.; Chen, J.; Feng, W.; Luo, T.; Hu, Y.; Yuan, C.; Zhao, Y.; Zhao, Y.; et al. Facile synthesis of defect-rich Fe-N-C hybrid from fullerene/ferrotetraphenylporphyrin as efficient oxygen reduction electrocatalyst for Zn-air battery. Chin. Chem. Lett. 2023, 34, 107601. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, X.; Chen, Y.; Tian, M.; Yang, T.; Zhang, J.; Gao, S. Ordered mesoporous carbon fiber bundles with high-density and accessible Fe-NX active sites as efficient ORR catalysts for Zn-air batteries. Chin. Chem. Lett. 2023, 34, 108142. [Google Scholar] [CrossRef]
- Liu, K.; Fu, J.; Luo, T.; Ni, G.; Li, H.; Zhu, L.; Wang, Y.; Lin, Z.; Sun, Y.; Cortés, E.; et al. Potential-Dependent Active Moiety of Fe–N–C Catalysts for the Oxygen Reduction Reaction. J. Phys. Chem. Lett. 2023, 14, 3749–3756. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wang, Y.; Shao, M. High-performance and durable Fe–N–C fuel cell catalysts. Joule 2024, 8, 881–882. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, R.; Tao, X.; Qiu, Z.; Chen, G.; Yang, J.; Zhao, Y.; Feng, X.; Müllen, K. Boosting Oxygen Electrocatalytic Activity of Fe–N–C Catalysts by Phosphorus Incorporation. J. Am. Chem. Soc. 2023, 145, 3647–3655. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, H.; Zhu, J.; Li, Z.; Xu, H.; Liu, B.; Zhang, Z.; Ma, J.; Mu, S. Stabilizing Fe–N–C Catalysts as Model for Oxygen Reduction Reaction. Adv. Sci. 2021, 8, e2102209. [Google Scholar] [CrossRef]
- Qin, G.; Sun, S.; Zhang, X.; Han, Z.; Li, Y.; Han, G.; Li, Y.; Zhu, S. Millisecond activity modulation of atomically-dispersed Fe–N–C catalysts. Energy Storage Mater. 2024, 69, 103421. [Google Scholar] [CrossRef]
- Peng, P.; Shi, L.; Huo, F.; Mi, C.; Wu, X.; Zhang, S.; Xiang, Z. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 2019, 5, eaaw2322. [Google Scholar] [CrossRef]
- Wang, T.; Sun, C.; Yan, Y.; Li, F. Understanding the active sites of Fe–N–C materials and their properties in the ORR catalysis system. RSC Adv. 2022, 12, 9543–9549. [Google Scholar] [CrossRef]
- Ahmad Junaidi, N.H.; Wong, W.Y.; Loh, K.S.; Rahman, S.; Choo, T.F.; Wu, B. Enhanced oxygen reduction reaction catalyst stability and durability of MXene-supported Fe-N-C catalyst for proton exchange membrane fuel cell application. J. Alloys Compd. 2023, 968, 171898. [Google Scholar] [CrossRef]
- Gu, W.; Wu, M.; Xu, J.; Zhao, T. MXene boosted metal-organic framework-derived Fe–N–C as an efficient electrocatalyst for oxygen reduction reactions. Int. J. Hydrogen Energy 2022, 47, 17224–17232. [Google Scholar] [CrossRef]
- Lisheshar, I.W.; Rouhi, S.; Ay, F.; Kosku Perkgöz, N. High-performance supercapacitors based on nonfunctionalized MXenes. J. Power Sources 2025, 628, 235894. [Google Scholar] [CrossRef]
- Wu, M.; Fan, X.; Zhang, W.; Chen, B.; Ye, T.; Zhang, Q.; Fang, Y.; Wang, Y.; Tang, Y. Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chin. Chem. Lett. 2024, 35, 109258. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Y.; Cheng, Z.; Wang, X.; Huang, N.; Zhang, H. Ti3C2Tx MXene wrapped, carbon-coated porous Si sheets for improved lithium storage performance. Chin. Chem. Lett. 2024, 35, 108923. [Google Scholar] [CrossRef]
- Tyagi, N.; Bhardwaj, V.; Moka, S.; Singh, M.K.; Khanuja, M.; Sharma, G. An overview on synthesis of MXene and MXene based nanocomposites for supercapacitors. Mater. Today Commun. 2024, 41, 110223. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, B.; Li, S.; Zhou, L.; Lai, L.; Wang, Z.; Zhao, S.; Han, M.; Gao, K.; Lu, M.; et al. Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano 2017, 11, 5800–5807. [Google Scholar] [CrossRef]
- Ran, J.; Gao, G.; Li, F.-T.; Ma, T.-Y.; Du, A.; Qiao, S.-Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907. [Google Scholar] [CrossRef]
- Peng, X.; Zhao, S.; Mi, Y.; Han, L.; Liu, X.; Qi, D.; Sun, J.; Liu, Y.; Bao, H.; Zhuo, L.; et al. Trifunctional Single-Atomic Ru Sites Enable Efficient Overall Water Splitting and Oxygen Reduction in Acidic Media. Small 2020, 16, e2002888. [Google Scholar] [CrossRef]
- Li, Z.; Zhuang, Z.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M.; Zhu, J.; Lang, Z.; Feng, S.; Chen, W.; et al. The Marriage of the FeN4 Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Adv. Mater. 2018, 30, e1803220. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Mahmood, M.; Rasheed, A.; Ayman, I.; Rasheed, T.; Munir, S.; Ajmal, S.; Agboola, P.O.; Warsi, M.F.; Shahid, M. Synthesis of Ultrathin MnO2 Nanowire-Intercalated 2D-MXenes for High-Performance Hybrid Supercapacitors. Energy Fuels 2021, 35, 3469–3478. [Google Scholar] [CrossRef]
- Pinheiro, V.S.; Paz, E.C.; Aveiro, L.R.; Parreira, L.S.; Souza, F.M.; Camargo, P.H.C.; Santos, M.C. Ceria high aspect ratio nanostructures supported on carbon for hydrogen peroxide electrogeneration. Electrochim. Acta 2018, 259, 865–872. [Google Scholar] [CrossRef]
- Sabry, R.S.; Al-Haidarie, Y.K.; Kudhier, M.A. Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by sol–gel method. J. Sol-Gel Sci. Technol. 2016, 78, 299–306. [Google Scholar] [CrossRef]
- Muhyuddin, M.; Berretti, E.; Mirshokraee, S.A.; Orsilli, J.; Lorenzi, R.; Capozzoli, L.; D’Acapito, F.; Murphy, E.; Guo, S.; Atanassov, P.; et al. Formation of the active site structures during pyrolysis transformation of Fe-phthalocyanine into Fe-Nx-C electrocatalysts for the oxygen reduction reaction. Appl. Catal. B Environ. 2024, 343, 123515. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Yue, W. Boosting electrocatalytic oxygen reduction performance of CoNC catalysts on Ti3C2 MXene by the synergistic effect with oxygen vacancy-rich TiO2. Chem. Eng. J. 2023, 456, 141101. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.; Zhuo, H.; Wei, Z.; Zhuang, G.; Zhong, X.; Deng, S.; Li, X.; Wang, J. Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 2264–2272. [Google Scholar] [CrossRef]
- Pei, D.-N.; Gong, L.; Zhang, A.-Y.; Zhang, X.; Chen, J.-J.; Mu, Y.; Yu, H.-Q. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nat. Commun. 2015, 6, 8696. [Google Scholar] [CrossRef]
- Shi, F.; Baker, L.R.; Hervier, A.; Somorjai, G.A.; Komvopoulos, K. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles. Nano Lett. 2013, 13, 4469–4474. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, M.-Q.; Anasori, B.; Maleski, K.; Ren, C.E.; Li, J.; Byles, B.W.; Pomerantseva, E.; Wang, G.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523. [Google Scholar] [CrossRef]
- Yu, L.; Hu, L.; Anasori, B.; Liu, Y.-T.; Zhu, Q.; Zhang, P.; Gogotsi, Y.; Xu, B. MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors. ACS Energy Lett. 2018, 3, 1597–1603. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Zhao, Z.; Huang, Y.; Zhu, K.; Feng, S.; Luo, S.; Wang, L.; Yan, K. A single-atom Fe–N2 embedded in nitrogen-doped porous carbon as a bifunctional photocatalyst for efficient removal of marine petroleum pollutants. Environ. Funct. Mater. 2023, 2, 66–75. [Google Scholar] [CrossRef]
- Chang, K.; Chen, W. Single-layer MoS2/graphene dispersed in amorphous carbon: Towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 2011, 21, 17175–17184. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Huang, L.-B.; Liu, X.-Z.; Zhang, Q.-H.; He, C.; Wu, Z.-Y.; Zhang, L.-J.; Wu, J.; Yang, W.; et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Verma, G.; Sekhon, S.S. Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater. Sci. 2019, 102, 1–71. [Google Scholar] [CrossRef]
- Nie, Y.; Xie, X.; Chen, S.; Ding, W.; Qi, X.; Wang, Y.; Wang, J.; Li, W.; Wei, Z.; Shao, M. Towards Effective Utilization of Nitrogen-Containing Active Sites: Nitrogen-doped Carbon Layers Wrapped CNTs Electrocatalysts for Superior Oxygen Reduction. Electrochim. Acta 2016, 187, 153–160. [Google Scholar] [CrossRef]
- Bao, X.; Nie, X.; von Deak, D.; Biddinger, E.J.; Luo, W.; Asthagiri, A.; Ozkan, U.S.; Hadad, C.M. A First-Principles Study of the Role of Quaternary-N Doping on the Oxygen Reduction Reaction Activity and Selectivity of Graphene Edge Sites. Top. Catal. 2013, 56, 1623–1633. [Google Scholar] [CrossRef]
- Bera, B.; Chakraborty, A.; Kar, T.; Leuaa, P.; Neergat, M. Density of States, Carrier Concentration, and Flat Band Potential Derived from Electrochemical Impedance Measurements of N-Doped Carbon and Their Influence on Electrocatalysis of Oxygen Reduction Reaction. J. Phys. Chem. C 2017, 121, 20850–20856. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, M.; Su, K.; Gu, F.; Li, Z. Fe–Nx–C sites decorated porous carbon nanorods with huge specific surface area boost oxygen reduction catalysis for Zn-air batteries. J. Alloys Compd. 2021, 868, 159015. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, T.; Pang, H.; Zhang, S.; Xu, L.; Yang, G.; Zhou, Q.; Tang, Y. Maneuver of the d-Orbital Spin Polarization of Fe Single Atomic Sites via a Near-Range Axial Ligand Effect for Boosting Oxygen Reduction Reaction. Appl. Catal. B 2025, 366, 125007. [Google Scholar] [CrossRef]
- Wu, D.; Zhuo, Z.; Song, Y.; Rao, P.; Luo, J.; Li, J.; Deng, P.; Yang, J.; Wu, X.; Tian, X. Synergistic Spin-Valence Catalysis Mechanism in Oxygen Reduction Reactions on Fe-N-C Single-Atom Catalysts. J. Mater. Chem. A 2023, 11, 13502–13509. [Google Scholar] [CrossRef]
- Xie, H.; Du, B.; Huang, X.; Zeng, D.; Meng, H.; Lin, H.; Li, W.; Asefa, T.; Meng, Y. High Density Single Fe Atoms on Mesoporous N-Doped Carbons: Noble Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Acidic and Alkaline Media. Small 2023, 19, 2303214. [Google Scholar] [CrossRef]
- He, Y.; Yang, X.; Li, Y.; Liu, L.; Guo, S.; Shu, C.; Liu, F.; Liu, Y.; Tan, Q.; Wu, G. Atomically Dispersed Fe-Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn–Air Batteries. ACS Catal. 2022, 12, 1216–1227. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karaman, C.; Karaman, O.; Karimi, F.; Vasseghian, Y.; Fu, L.; Baghayeri, M.; Rouhi, J.; Kumar, P.S.; Show, P.-L.; et al. Nanochemistry Approach for the Fabrication of Fe and N Co-Decorated Biomass-Derived Activated Carbon Frameworks: A Promising Oxygen Reduction Reaction Electrocatalyst in Neutral Media. J. Nanostruct. Chem. 2022, 12, 429–439. [Google Scholar] [CrossRef]
- Li, H.; Wen, Y.; Jiang, M.; Yao, Y.; Zhou, H.; Huang, Z.; Li, J.; Jiao, S.; Kuang, Y.; Luo, S. Understanding of Neighboring Fe-N4-C and Co–N4–C Dual Active Centers for Oxygen Reduction Reaction. Adv. Funct. Mater. 2021, 31, 2011289. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Zhang, B.; Huang, Y.; Qi, H.; Das, P.; Zhang, L.; Wang, X.; Wu, Z.-S.; Bao, X. N,O Symmetric Double Coordination of an Unsaturated Fe Single-Atom Confined within a Graphene Framework for Extraordinarily Boosting Oxygen Reduction in Zn–Air Batteries. Energy Environ. Sci. 2023, 16, 2629–2636. [Google Scholar] [CrossRef]
- Sheng, J.; Zhu, S.; Jia, G.; Liu, X.; Li, Y. Carbon Nanotube Supported Bifunctional Electrocatalysts Containing Iron–Nitrogen–Carbon Active Sites for Zinc–Air Batteries. Nano Res. 2021, 14, 4541–4547. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, R.; Pan, Y.; Cao, Z.; Zuo, J.; Qiu, F.; Yu, J.; Song, H.; Ye, Z.; Zhang, S. Ultrahigh-Loaded Fe Single Atoms and Fe3C Nanoparticle Catalysts as Air Cathodes for High-Performance Zn–Air Batteries. ACS Appl. Mater. Interfaces 2023, 15, 5720–5731. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Sun, Q.; Chen, J.; Zhu, X.; Abazari, R.; Qian, J. Molecular Catalyst of Fe Phthalocyanine Loaded into In-Based MOF-Derived Defective Carbon Nanoflowers for Oxygen Reduction. Chem. Eng. J. 2024, 483, 149243. [Google Scholar] [CrossRef]
- Li, T.; Lu, Y.; Zhao, S.; Gao, Z.-D.; Song, Y.-Y. Co3O4-doped Co/CoFe nanoparticles encapsulated in carbon shells as bifunctional electrocatalysts for rechargeable Zn–Air batteries. J. Mater. Chem. A 2018, 6, 3730–3737. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Diao, P.; Chang, W.; Hong, G.; Li, Y.; Gong, M.; Xie, L.; Zhou, J.; Wang, J.; et al. Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857. [Google Scholar] [CrossRef]
- Han, X.; Yu, C.; Yang, J.; Zhao, C.; Huang, H.; Liu, Z.; Ajayan, P.M.; Qiu, J. Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe-Layered Double Hydroxide Assembled on Graphene. Adv. Mater. Interfaces 2016, 3, 1500782. [Google Scholar] [CrossRef]
- Öztürk, A.; Bayrakçeken Yurtcan, A. Preparation and characterization of melamine-led nitrogen-doped carbon blacks at different pyrolysis temperatures. J. Solid State Chem. 2021, 296, 121972. [Google Scholar] [CrossRef]
- He, C.; Xia, C.; Li, F.-M.; Zhang, J.; Guo, W.; Xia, B.Y. Rational Design of Oxygen Species Adsorption on Nonnoble Metal Catalysts for Two-Electron Oxygen Reduction. Adv. Energy Mater. 2024, 14, 2303233. [Google Scholar] [CrossRef]
- Song, W.; Ren, Z.; Chen, S.-Y.; Meng, Y.; Biswas, S.; Nandi, P.; Elsen, H.A.; Gao, P.-X.; Suib, S.L. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 8, 20802–20813. [Google Scholar] [CrossRef] [PubMed]
Catalysts | Pyridinic N | Pyrrolic N | Graphite N | Oxygen N |
---|---|---|---|---|
FeNC | 27.12% | 27.15 | 29.56% | 16.17% |
FeNC/MXene-1 | 36.08% | 20.29% | 27.66% | 15.97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Wang, F.; Si, W. Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction. Inorganics 2025, 13, 188. https://doi.org/10.3390/inorganics13060188
Zheng H, Wang F, Si W. Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction. Inorganics. 2025; 13(6):188. https://doi.org/10.3390/inorganics13060188
Chicago/Turabian StyleZheng, Han, Fagang Wang, and Weimeng Si. 2025. "Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction" Inorganics 13, no. 6: 188. https://doi.org/10.3390/inorganics13060188
APA StyleZheng, H., Wang, F., & Si, W. (2025). Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction. Inorganics, 13(6), 188. https://doi.org/10.3390/inorganics13060188