High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy
Abstract
1. Introduction
2. Methods
2.1. Manufacturing
2.2. Characterization
3. Discussion
4. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QCL | Quantum Cascade Laser |
FWHM | Full Width Halfg Maximum |
DFB | Distributed Feedback Bragg Reflector |
MOPA | Master Oscillator Power Amplifier |
FNSPD | Frequency Noise Power Spectral Density |
CW | Continuous Wave |
References
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553. [Google Scholar] [CrossRef] [PubMed]
- Santagata, R.; Tran, D.B.A.; Argence, B.; Lopez, O.; Tokunaga, S.K.; Wiotte, F.; Mouhamad, H.; Goncharov, A.; Abgrall, M.; Coq, Y.L.; et al. High-precision methanol spectroscopy with a widely tunable SI-traceable frequency-comb-based mid-infrared QCL. Optica 2019, 6, 411. [Google Scholar] [CrossRef]
- Genner, A.; Martín-Mateos, P.; Moser, H.; Lendl, B. A Quantum Cascade Laser-Based Multi-Gas Sensor for Ambient Air Monitoring. Sensors 2020, 20, 1850. [Google Scholar] [CrossRef] [PubMed]
- Krötz, P.; Stupar, D.; Krieg, J.; Sonnabend, G.; Sornig, M.; Giorgetta, F.; Baumann, E.; Giovannini, M.; Hoyler, N.; Hofstetter, D.; et al. Applications for quantum cascade lasers and detectors in mid-infrared high-resolution heterodyne astronom. Appl. Phys. B 2008, 90, 187. [Google Scholar] [CrossRef][Green Version]
- Germann, M.; Tong, X.; Willitsch, S. Observation of electric-dipole-forbidden infrared transitions in cold molecular ions. Nat. Phys. 2014, 10, 820. [Google Scholar] [CrossRef]
- Argence, B.; Chanteau, B.; Lopez, O.; Nicolodi, D.; Abgrall, M.; Chardonnet, C.; Daussy, C.; Darquié, B.; Le Coq, Y.; Amy-Klein, A. Quantum cascade laser frequency stabilization at the sub-Hz level. Nat. Photonics 2015, 9, 456. [Google Scholar] [CrossRef]
- Myers, T.L.; Williams, R.M.; Taubman, M.S.; Gmachl, C.; Capasso, F.; Sivco, D.L.; Baillargeon, J.N.; Cho, A.Y. Free-running frequency stability of mid-infrared quantum cascade lasers. Opt. Lett. 2002, 27, 170. [Google Scholar] [CrossRef]
- Tombez, L.; Francesco, J.D.; Schilt, S.; Domenico, G.D.; Faist, J.; Thomann, P.; Hofstetter, D. Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature. Opt. Lett. 2011, 36, 3109. [Google Scholar] [CrossRef]
- Razeghi, M.; Slivken, S.; Bai, Y.; Gokden, B.; Darvish, S.R. High power quantum cascade lasers. New J. Phys. 2009, 11, 125017. [Google Scholar] [CrossRef]
- Bai, Y.; Bandyopadhyay, N.; Tsao, S.; Slivken, S.; Razeghi, M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 2011, 98, 181102. [Google Scholar] [CrossRef]
- Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Patel, C.K.N. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt. Express 2012, 20, 24272. [Google Scholar] [CrossRef]
- Schawlow, A.L.; Townes, C.H. Infrared and Optical Masers. Phys. Rev. 1958, 112, 1940. [Google Scholar] [CrossRef]
- Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 1982, 18, 259. [Google Scholar] [CrossRef]
- Aellen, T.; Maulini, R.; Terazzi, R.; Hoyler, N.; Giovannini, M.; Faist, J.; Blaser, S.; Hvozdara, L. Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser. Appl. Phys. Lett. 2006, 89, 091121. [Google Scholar] [CrossRef]
- Hangauer, A.; Wysocki, G. Gain Compression and Linewidth Enhancement Factor in Mid-IR Quantum Cascade Lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 74–84. [Google Scholar] [CrossRef]
- Bartalini, S.; Borri, S.; Cancio, P.; Castrillo, A.; Galli, I.; Giusfredi, G.; Mazzotti, D.; Gianfrani, L.; De Natale, P. Observing the Intrinsic Linewidth of a Quantum-Cascade Laser: Beyond the Schawlow-Townes Limit. Phys. Rev. Lett. 2010, 104, 083904. [Google Scholar] [CrossRef]
- Yamanishi, M.; Edamura, T.; Fujita, K.; Akikusa, N.; Kan, H. Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons. IEEE J. Quantum Electron. 2008, 44, 12. [Google Scholar] [CrossRef]
- Najafian, K.; Meir, Z.; Willitsch, S. From megahertz to terahertz qubits encoded in molecular ions: Theoretical analysis of dipole-forbidden spectroscopic transitions in N2+. Phys. Chem. Chem. Phys. 2020, 22, 23083. [Google Scholar] [CrossRef]
- Menzel, S.; Diehl, L.; Pflügl, C.; Goyal, A.; Wang, C.; Sanchez, A.; Turner, G.; Capasso, F. Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K. Opt. Express 2011, 19, 16229–16235. [Google Scholar] [CrossRef]
- Hinkov, B.; Beck, M.; Gini, E.; Faist, J. Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power. Opt. Express 2013, 21, 19180. [Google Scholar] [CrossRef]
- Faist, J.; Hofstetter, D.; Beck, M.; Aellen, T.; Rochat, M.; Blaser, S. Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation. IEEE J. Quantum Electron. 2002, 38, 533–546. [Google Scholar] [CrossRef]
- Beck, M.; Faist, J.; Oesterle, U.; Ilegems, M.; Gini, E.; Melchior, H. Buried heterostructure quantum cascade lasers with a large optical cavity waveguide. IEEE Photonics Technol. Lett. 2000, 12, 1450–1452. [Google Scholar] [CrossRef]
- Süess, M.J.; Peretti, R.; Liang, Y.; Wolf, J.M.; Bonzon, C.; Hinkov, B.; Nida, S.; Jouy, P.; Metaferia, W.; Lourdudoss, S.; et al. Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs. Photonics 2016, 3, 26. [Google Scholar] [CrossRef]
- Bertrand, M.; Franckié, M.; Forrer, A.; Faist, J. 2022; unpublished.
- Okoshi, T.; Kikuchi, K.; Nakayama, A. Novel method for high resolution measurement of laser output spectrum. Electron. Lett. 1980, 16, 630. [Google Scholar] [CrossRef]
- Ludvigsen, H.; Tossavainen, M.; Kaivola, M. Laser linewidth measurements using self-homodyne detection with short delay. Opt. Commun. 1998, 155, 180. [Google Scholar] [CrossRef]
- Baney, D.M.; Sorin, W.V. Fiber Optic Test and Measurement; Chapter 13; Prentice-Hall: Hoboken, NJ, USA, 1998. [Google Scholar]
- Bucalovic, N.; Dolgovskiy, V.; Schori, C.; Thomann, P.; Domenico, G.D.; Schilt, S. Experimental validation of a simple approximation to determine the linewidth of a laser from its frequency noise spectrum. Appl. Opt. 2012, 51, 4582. [Google Scholar] [CrossRef] [PubMed]
- Domenico, G.D.; Schilt, S.; Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 2010, 49, 4801. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hargreaves, R.; Hashemi, R.; Karlovets, E.; Skinner, F.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Borri, S.; Bartalini, S.; Pastor, P.C.; Galli, I.; Giusfredi, G.; Mazzotti, D.; Yamanishi, M.; De Natale, P. Frequency-Noise Dynamics of Mid-Infrared Quantum Cascade Lasers. IEEE J. Quantum Electron. 2011, 47, 984. [Google Scholar] [CrossRef]
- Sergachev, I.; Maulini, R.; Gresch, T.; Blaser, S.; Bismuto, A.; Müller, A.; Bidaux, Y.; Südmeyer, T.; Schilt, S. Frequency stability of a dual wavelength quantum cascade laser. Opt. Express 2017, 25, 11027. [Google Scholar] [CrossRef]
- Bartalini, S.; Borri, S.; Galli, I.; Giusfredi, G.; Mazzotti, D.; Edamura, T.; Akikusa, N.; Yamanishi, M.; Natale, P.D. Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Opt. Express 2011, 19, 17996. [Google Scholar] [CrossRef] [PubMed]
- Tombez, L.; Schilt, S.; Francesco, J.D.; Thomann, P.; Hofstetter, D. Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature. Opt. Express 2012, 20, 6851. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cappelli, F.; Galli, I.; Borri, S.; Giusfredi, G.; Cancio, P.; Mazzotti, D.; Montori, A.; Akikusa, N.; Yamanishi, M.; Bartalini, S.; et al. Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference. Opt. Lett. 2012, 37, 4811. [Google Scholar] [CrossRef] [PubMed]
- Borri, S.; Galli, I.; Cappelli, F.; Bismuto, A.; Bartalini, S.; Cancio, P.; Giusfredi, G.; Mazzotti, D.; Faist, J.; Natale, P.D. Direct link of a mid-infrared QCL to a frequency comb by optical injection. Opt. Lett. 2012, 37, 1011. [Google Scholar] [CrossRef]
- Tombez, L.; Schilt, S.; Hofstetter, D.; Südmeyer, T. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference. Opt. Lett. 2013, 38, 5079. [Google Scholar] [CrossRef]
- Sergachev, I.; Maulini, R.; Bismuto, A.; Blaser, S.; Gresch, T.; Bidaux, Y.; Müller, A.; Schilt, S.; Südmeyer, T. All-electrical frequency noise reduction and linewidth narrowing in quantum cascade lasers. Opt. Lett. 2014, 39, 6411. [Google Scholar] [CrossRef]
- Fasci, E.; Coluccelli, N.; Cassinerio, M.; Gambetta, A.; Hilico, L.; Gianfrani, L.; Laporta, P.; Castrillo, A.; Galzerano, G. Narrow-linewidth quantum cascade laser at 8.6 μm. Opt. Lett. 2014, 39, 4946. [Google Scholar] [CrossRef]
Current State of the Art | |||||
---|---|---|---|---|---|
Pow. [mW] | FWHM [kHz] | Obs. Time [ms] | WL [m] | Author | Ref. |
>300 | 1300 | 10 | 4.56 | Bertrand 2022 | this work |
20 | 400 | 10 | 4.36 | Bartalini 2011 | [33] |
6 | 550 | 5 | 4.6 | Tombez 2011 | [8] |
20 | 770 | 10 | 4.56 | Tombez 2012 | [34] |
10 | 500 | 1 | 4.3 | Cappelli 2012 | [35] |
20 | 2750 | 50 | 4.67 | Borri 2012 | [36] |
10 | 2000 | 10 | 4.55 | Tombez 2013 | [37] |
20 | 1700 | 10 | 7.9 | Sergachev 2014 | [38] |
50 | 3200 | 1 | 8.6 | Fasci 2014 | [39] |
40 | 300 | 1000 | 10.3 | Argence 2015 | [6] |
150 | 380 | 1 | 4.5 | Sergachev 2017 | [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertrand, M.; Shlykov, A.; Shahmohamadi, M.; Beck, M.; Willitsch, S.; Faist, J. High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy. Photonics 2022, 9, 589. https://doi.org/10.3390/photonics9080589
Bertrand M, Shlykov A, Shahmohamadi M, Beck M, Willitsch S, Faist J. High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy. Photonics. 2022; 9(8):589. https://doi.org/10.3390/photonics9080589
Chicago/Turabian StyleBertrand, Mathieu, Aleksandr Shlykov, Mehran Shahmohamadi, Mattias Beck, Stefan Willitsch, and Jérôme Faist. 2022. "High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy" Photonics 9, no. 8: 589. https://doi.org/10.3390/photonics9080589
APA StyleBertrand, M., Shlykov, A., Shahmohamadi, M., Beck, M., Willitsch, S., & Faist, J. (2022). High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy. Photonics, 9(8), 589. https://doi.org/10.3390/photonics9080589