Amplitude Zone Plate in Adaptive Optics: Proposal of the Principle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Scheme
2.2. DLP Matrix and Amplitude Fresnel Zone Plate
2.3. Focusing the Beam Using the Fresnel Plate
2.4. Modeling of Deformable Mirrors
3. Results
3.1. Simulation Results
3.2. Experimental Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Goncharov, A.S.; Iroshnikov, N.G.; Larichev, A.V. Retinal Imaging: Adaptive Optics. In Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring, and Materials Science; Tuchin, V.V., Ed.; Springer New York: New York, NY, USA, 2013; pp. 397–434. [Google Scholar]
- Kumar, A.; Drexler, W.; Leitgeb, R.A. Subaperture correlation based digital adaptive optics for full field optical coherence tomography. Opt. Express. OSA 2013, 21, 10850–10866. [Google Scholar] [CrossRef] [PubMed]
- Shemonski, N.D.; South, F.A.; Liu, Y.; Adie, S.G.; Carney, P.S.; Boppart, S.A. Computational high-resolution optical imaging of the living human retina. Nat. Photonics 2015, 9, 440–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moiseev, A.A.; Gelikonov, G.V.; Shilyagin, P.A.; Gelikonov, V.M. Using phase gradient autofocus (PGA) algorithm for restoration OCT images with diffraction limited resolution. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine; Proc. SPIE 7999, Saratov Fall Meeting 2010; SPIE: Bellingham, WA, USA, 2011. [Google Scholar]
- Hillmann, D.; Spahr, H.; Hain, C.; Sudkamp, H.; Franke, G.; Pfäffle, C.; Winter, C.; Hüttmann, G. Aberration-free volumetric high-speed imaging of in vivo retina. Sci. Rep. 2016, 6, 35209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillmann, D.; Pfäffle, C.; Spahr, H.; Burhan, S.; Kutzner, L.; Hilge, F.; Hüttmann, G. Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations. Opt. Lett. OSA 2019, 44, 3905–3908. [Google Scholar] [CrossRef] [PubMed]
- Matkivsky, V.A.; Moiseev, A.A.; Gelikonov, G.V.; Shabanov, D.V. Correction of aberrations in digital holography using the phase gradient autofocus technique. Laser Phys. Lett. 2016, 13, 35601. [Google Scholar] [CrossRef]
- Ginner, L.; Kumar, A.; Fechtig, D.; Wurster, L.M.; Salas, M.; Pircher, M.; Leitgeb, R.A. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo. Optica 2017, 4, 924–931. [Google Scholar] [CrossRef]
- South, F.A.; Kurokawa, K.; Liu, Z.; Liu, Y.Z.; Miller, D.T.; Boppart, S.A. Combined hardware and computational optical wavefront correction. Biomed. Opt. Express. OSA 2018, 9, 2562–2574. [Google Scholar] [CrossRef] [PubMed]
- Matveyev, A.L.; Matveev, L.A.; Moiseev, A.A.; Sovetsky, A.A.; Gelikonov, G.V.; Zaitsev, V.Y. Simulating scan formation in multimodal optical coherence tomography: Angular-spectrum formulation based on ballistic scattering of arbitrary-form beams. Biomed. Opt. Express. OSA 2021, 12, 7599–7615. [Google Scholar] [CrossRef] [PubMed]
- Pircher, M.; Zawadzki, R.J. Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging [Invited]. Biomed. Opt. Express. OSA 2017, 8, 2536–2562. [Google Scholar] [CrossRef] [PubMed]
- Bernet, S.; Harm, W.; Ritsch-Marte, M. Demonstration of focus-tunable diffractive Moiré-lenses. Opt. Express. OSA 2013, 21, 6955–6966. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ghilardi, M.; Busfield, J.J.C.; Carpi, F. Electrically Tunable Lenses: A Review. Front. Robot. AI Front. Media SA 2021. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.A.; Millán, M.S.; Jaroszewicz, Z.; Kolodziejczyk, A. Programmable Diffractive Optical Elements for Extending the Depth of Focus in Ophthalmic Optics. In Proceedings of the 10th International Symposium on Medical Information Processing and Analysis. International Society for Optics and Photonics, Cartagena de Indias, Colombia, 14–16 October 2014; Volume 9287, p. 92871E. [Google Scholar]
- Li, G.; Mathine, D.L.; Valley, P.; Ayräs, P.; Haddock, J.N.; Giridhar, M.S.; Williby, G.; Schwiegerling, J.; Meredith, G.R.; Kippelen, B.; et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. Proc. Natl. Acad. Sci. USA 2006, 103, 6100–6104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Mohammad, N.; Menon, R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghilardi, M.; Boys, H.; Török, P.; Busfield, J.J.C.; Carpi, F. Smart Lenses with Electrically Tuneable Astigmatism. Sci. Rep. 2019, 9, 16127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipp, L.; Skibowski, M.; Johnson, R.L.; Berndt, R.; Adelung, R.; Harm, S.; Seemann, R. Sharper images by focusing soft X-rays with photon sieves. Nature 2001, 414, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Oktem, F.S.; Kamalabadi, F.; Davila, J.M. Analytical Fresnel imaging models for photon sieves. Opt. Express 2018, 26, 32259–32279. [Google Scholar] [CrossRef] [PubMed]
- Oktem, F.S.; Kar, O.F.; Bezek, C.D.; Kamalabadi, F. High-resolution multi-spectral imaging with diffractive lenses and learned reconstruction. IEEE Trans. Comput. Imaging 2021. [Google Scholar] [CrossRef]
- Hallada, F.D.; Franz, A.L.; Hawks, M.R. Fresnel zone plate light field spectral imaging. Opt. Eng. 2017, 56, 1–11. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Zhang, J.; Li, Y.; Liu, D.; Zhu, J. Shack-Hartmann wavefront sensing with super-resolution photon-sieve array. In 4th Optics Young Scientist Summit (OYSS 2020); International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2021; Volume 11781, p. 117810T. [Google Scholar]
- Breckinridge, J.B.; Voelz, D.G. Computational fourier optics: A MATLAB tutorial. In Society of Photo-Optical Instrumentation Engineers; SPIE Press: Bellingham, WA, USA, 2011. [Google Scholar]
- Matkivsky, V.; Moiseev, A.; Shilyagin, P.; Rodionov, A.; Spahr, H.; Pfäffle, C.; Hüttmann, G.; Hillmann, D.; Gelikonov, G. Determination and correction of aberrations in full field optical coherence tomography using phase gradient autofocus by maximizing the likelihood function. J. Biophotonics. 2020, 13, e202000112. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.; Guirao, A.; Cox, I.G.; Williams, D.R. Monochromatic aberrations of the human eye in a large population. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 2001, 18, 1793–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
With Compensation | Without Compensation | |
---|---|---|
Piezoelectric mirror | 0.80 ± 0.15 | 0.016 ± 0.012 |
MEMS mirror | 0.77 ± 0.07 | |
DLP matrix | 0.077 ± 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matkivsky, V.; Moiseev, A.; Shilyagin, P.; Gelikonov, G. Amplitude Zone Plate in Adaptive Optics: Proposal of the Principle. Photonics 2022, 9, 163. https://doi.org/10.3390/photonics9030163
Matkivsky V, Moiseev A, Shilyagin P, Gelikonov G. Amplitude Zone Plate in Adaptive Optics: Proposal of the Principle. Photonics. 2022; 9(3):163. https://doi.org/10.3390/photonics9030163
Chicago/Turabian StyleMatkivsky, Vasily, Alexsandr Moiseev, Pavel Shilyagin, and Grigory Gelikonov. 2022. "Amplitude Zone Plate in Adaptive Optics: Proposal of the Principle" Photonics 9, no. 3: 163. https://doi.org/10.3390/photonics9030163
APA StyleMatkivsky, V., Moiseev, A., Shilyagin, P., & Gelikonov, G. (2022). Amplitude Zone Plate in Adaptive Optics: Proposal of the Principle. Photonics, 9(3), 163. https://doi.org/10.3390/photonics9030163