Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farooq, A.; Alquaity, A.B.; Raza, M.; Nasir, E.F.; Yao, S.; Ren, W. Laser sensors for energy systems and process industries: Perspectives and directions. Prog. Energy Combust. Sci. 2022, 91, 100997. [Google Scholar] [CrossRef]
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 2009, 48, 5546–5560. [Google Scholar] [CrossRef] [PubMed]
- Supplee, J.M.; Whittaker, E.A.; Lenth, W. Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt. 1994, 33, 6294–6302. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jia, S.; Wang, Y.; Tang, Z. Recent Developments in Modulation Spectroscopy for Methane Detection Based on Tunable Diode Laser. Appl. Sci. 2019, 9, 2816. [Google Scholar] [CrossRef]
- Silver, J.A. Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods: Errata. Appl. Opt. 1992, 31, 4927. [Google Scholar] [CrossRef]
- Bjorklund, G.C. Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 1980, 5, 15–17. [Google Scholar] [CrossRef]
- Zhang, W.; Martin, M.J.; Benko, C.; Hall, J.L.; Ye, J.; Hagemann, C.; Legero, T.; Sterr, U.; Riehle, F.; Cole, G.D.; et al. Reduction of residual amplitude modulation to 1 × 10−6 for frequency modulation and laser stabilization. Opt. Lett. 2014, 39, 1980–1983. [Google Scholar] [CrossRef]
- Tai, Z.; Yan, L.; Zhang, Y.; Zhang, L.; Jiang, H.; Zhang, S. An electro-optic modulator with ultra-low residual amplitude modulation. Opt. Lett. 2016, 41, 5584–5587. [Google Scholar] [CrossRef]
- Li, C.; Shao, L.; Meng, H.; Wei, J.; Qiu, X.; He, Q.; Ma, W.; Deng, L.; Chen, Y. High-speed multi-pass tunable diode laser absorption spectrometer based on frequency-modulation spectroscopy. Opt. Express 2018, 26, 29330–29339. [Google Scholar] [CrossRef]
- Chen, J.; Du, Z.; Sun, T.; Li, J.; Ma, Y. Self-corrected frequency modulation spectroscopy immune to phase random and light intensity fluctuation. Opt. Express 2019, 27, 30700–30709. [Google Scholar] [CrossRef]
- Gagliardi, G.; Borri, S.; Tamassia, F.; Capasso, F.; Gmachl, C.; Sivco, D.L.; Baillargeon, J.N.; Hutchinson, A.L.; Cho, A.Y. A frequency-modulated quantum-cascade laser for spectroscopy of CH4and N2O isotopomers. Isot. Environ. Health Stud. 2005, 41, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Stuhr, M.; Faßheber, N.; Friedrichs, G. Single-tone mid-infrared frequency modulation spectroscopy for sensitive detection of transient species. Opt. Express 2019, 27, 26499–26512. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, P.; Malara, P.; Gagliardi, G.; De Natale, P. Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm. Appl. Phys. A 2006, 85, 219–222. [Google Scholar] [CrossRef]
- Hinkov, B.; Hayden, J.; Szedlak, R.; Pilat, F.; Martin-Mateos, P.; Jerez, B.; Aecdo, P.; Strasser, G.; Lendl, B. High Frequency Modulation Characteristics of Mid-Infrared Ring Quantum Cascade Lasers. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019. [Google Scholar] [CrossRef]
- Borri, S.; Bartalini, S.; De Natale, P.; Inguscio, M.; Gmachl, C.; Capasso, F.; Sivco, D.; Cho, A. Frequency modulation spectroscopy by means of quantum-cascade lasers. Appl. Phys. A 2006, 85, 223–229. [Google Scholar] [CrossRef]
- Eichholz, R.; Richter, H.; Wienold, M.; Schrottke, L.; Hey, R.; Grahn, H.T.; Hübers, H.-W. Frequency modulation spectroscopy with a THz quantum-cascade laser. Opt. Express 2013, 21, 32199–32206. [Google Scholar] [CrossRef] [PubMed]
- Goldenstein, C.S.; Mathews, G.C. Simulation technique enabling calibration-free frequency-modulation spectroscopy measurements of gas conditions and lineshapes with modulation frequencies spanning kHz to GHz. Appl. Opt. 2020, 59, 1491–1500. [Google Scholar] [CrossRef]
- Peng, C.; Chen, G.; Tang, J.; Wang, L.; Wen, Z.; Zhou, H.; Martini, R. High-Speed Mid-Infrared Frequency Modulation Spectroscopy Based on Quantum Cascade Laser. IEEE Photon- Technol. Lett. 2016, 28, 1727–1730. [Google Scholar] [CrossRef]
- Stuhr, M.; Hesse, S.; Friedrichs, G. Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves. Fuels 2021, 2, 437–447. [Google Scholar] [CrossRef]
- Yao, C.; Xiao, L.; Gao, S.; Wang, Y.; Wang, P.; Kan, R.; Jin, W.; Ren, W. Sub-ppm CO detection in a sub-meter-long hollow-core negative curvature fiber using absorption spectroscopy at 2.3 μm. Sens. Actuators B Chem. 2019, 303, 127238. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, Y.; Bao, H.; Ho, H.L.; Jin, W.; Fan, S.; Gao, S.; Wang, Y.; Wang, P. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun. 2020, 11, 847. [Google Scholar] [CrossRef]
- Krzempek, K.; Jaworski, P.; Kozioł, P.; Belardi, W. Antiresonant hollow core fiber-assisted photothermal spectroscopy of nitric oxide at 5.26 μm with parts-per-billion sensitivity. Sensors Actuators B Chem. 2021, 345, 130374. [Google Scholar] [CrossRef]
- Hu, M.; Ventura, A.; Hayashi, J.G.; Poletti, F.; Yao, S.; Ren, W. Trace gas detection in a hollow-core antiresonant fiber with heterodyne phase-sensitive dispersion spectroscopy. Sensors Actuators B Chem. 2022, 363, 131774. [Google Scholar] [CrossRef]
- Jaworski, P.; Dudzik, G.; Sazio, P.J.; Belardi, W.; Krzempek, K. Laser-Based Nitric Oxide Detection at 5.26 Μm Using Antiresonant Hollow-Core Fiber. In Proceedings of the Optical Fiber Communication Conference, Washington, DC, USA, 6–11 June 2021; Volume 1, pp. 5–7. [Google Scholar]
- Jaworski, P.; Yu, F.; Bojęś, P.; Wu, D.; Kozioł, P.; Dudzik, G.; Abramski, K.; Liao, M.; Krzempek, K. Antiresonant Hollow-Core Fiber for Multiple Gas Detection in the Mid-IR. In Proceedings of the CLEO: Science and Innovations 2020, Washington, DC, USA, 10–15 May 2020. [Google Scholar] [CrossRef]
- Jaworski, P.; Kozioł, P.; Krzempek, K.; Wu, D.; Yu, F.; Bojęś, P.; Dudzik, G.; Liao, M.; Abramski, K.; Knight, J. Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions. Sensors 2020, 20, 3813. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Hu, M.; Ventura, A.; Hayashi, J.G.; Poletti, F.; Ren, W. Tellurite Hollow-Core Antiresonant Fiber-Coupled Quantum Cascade Laser Absorption Spectroscopy. J. Light. Technol. 2021, 39, 5662–5668. [Google Scholar] [CrossRef]
- Yang, T.; Tian, C.; Chen, G.; Martini, R. Non-resonant optical modulation of quantum cascade laser and its application potential in infrared spectroscopy. In Novel In-Plane Semiconductor Lasers XIII; SPIE: Bellingham, WA, USA, 2014; pp. 214–223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Ventura, A.; Hayashi, J.G.; Poletti, F.; Ren, W. Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber. Photonics 2022, 9, 935. https://doi.org/10.3390/photonics9120935
Hu M, Ventura A, Hayashi JG, Poletti F, Ren W. Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber. Photonics. 2022; 9(12):935. https://doi.org/10.3390/photonics9120935
Chicago/Turabian StyleHu, Mengyuan, Andrea Ventura, Juliano Grigoleto Hayashi, Francesco Poletti, and Wei Ren. 2022. "Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber" Photonics 9, no. 12: 935. https://doi.org/10.3390/photonics9120935
APA StyleHu, M., Ventura, A., Hayashi, J. G., Poletti, F., & Ren, W. (2022). Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber. Photonics, 9(12), 935. https://doi.org/10.3390/photonics9120935