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Abstract: We study the robustness of a nonlinear frequency-division multiplexing (NFDM) system,
based on the Zakharov-Shabat spectral problem (ZSSP), that is comprised of two independent
quadrature phase-shift keyed (QPSK) channels modulated in the discrete spectrum associated with
two distinct eigenvalues. Among the many fiber impairments that may limit this system, we focus
on determining the limits due to third-order dispersion, the Raman effect, amplified spontaneous
emission (ASE) noise from erbium-doped fiber amplifiers (EDFAs), and fiber losses with lumped gain
from EDFAs. We examine the impact of these impairments on a 1600-km system by analyzing the Q-
factor calculated from the error vector magnitude (EVM) of the received symbols. We found that the
maximum launch power due to these impairments is: 13 dBm due to third-order dispersion, 11 dBm
due to the Raman effect, 3 dBm due to fiber losses with lumped gain, and 2 dBm due to these three
impairments combined with ASE noise. The maximum launch power due to all these impairments
combined is comparable to that of a conventional wavelength-division multiplexing (WDM) system,
even though WDM systems can operate over a much larger bandwidth and, consequently, have a
much higher data throughput when compared with NFDM systems. We find that fiber losses in
practical fiber transmission systems with lumped gain from EDFAs is the most stringent limiting
factor in the performance of this NFDM system.

Keywords: fiber nonlinear optics; nonlinear Fourier transform; discrete spectrum modulation

1. Introduction

The spectral efficiency of traditional optical fiber communications systems is limited
by the maximum launch power imposed by the Kerr nonlinearity [1]. It is important to
investigate techniques that can increase the maximum power, which indicates potential
for higher spectral efficiency. An alternative to the use of modulation techniques in optical
fiber transmission systems designed for linear systems is the application of nonlinear
Fourier transform (NFT) and its inverse (INFT) for the encoding and decoding of digital
data in an optical carrier. The NFT is a numerical method that carries out a numerical
decomposition of the eigenvalues and the eigenfunctions of the Zakharov-Shabat spectral
problem (ZSSP) [2], which is equivalent to the lossless nonlinear Schrödinger equation
(NLSE). The NFT is an approach to solve the NLSE in which the phase of the spectral
function associated with each eigenvalue evolves linearly along the optical fiber in the
presence of the nonlinear Kerr effect. The NFT transforms a waveform into a discrete and
a continuous component of the nonlinear spectrum, which comprise the scattering data.
The use of scattering data has been proposed as an approach to deal with the nonlinear
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propagation in optical fibers that could potentially lead to modulation formats with higher
spectral efficiency (SE) than currently achievable with existing modulation formats [3].

The lossless NLSE belongs to a a class of integrable nonlinear equations that can be
decomposed in their corresponding modes or degrees of freedom, which are denoted the
nonlinear spectrum. The nonlinear spectrum of the NLSE can be continous and discrete
for anomalous dispersion fibers (negative chromatic dispersion: β2 < 0), but can only
be continuous for normal dispersion fibers (positive chromatic dispersion: β2 > 0). The
discrete modes of integrable nonlinear equations correspond in time-domain to soliton
waves, which have been observed in a variety of nonlinear media whose wave propagation
is described by integrable nonlinear equations [4–12].

There are two approaches for the encoding and decoding of data that can be carried out
using the NFT. The NFT can be used to encode data directly on the eigenvalues of the ZSSP
at the transmitter using an INFT algorithm, which is decoded with an NFT algorithm at the
receiver [13–23]. The other approach uses the NFT as a one-step digital-back-propagation
algorithm at the receiver to compensate for the nonlinearity and the dispersion along the
fiber [3,24–26].

We previously studied the use of one-step digital back-propagation based on the NFT
to mitigate the nonlinear Kerr effect in optical fiber communications systems operating
in the normal dispersion regime using NFT for data decoding at the receiver while using
standard QPSK encoding at the transmitter [26,27] that was based on an earlier work
by Turitsyna et al. [24]. We found that the computational cost of this approach becomes
unacceptably large at data frame sizes and power levels that are too small to make this
approach competitive with current linear transmission schemes [27]. The reason for the
rapid increase of the computational cost to encode and decode data in the continuous
spectrum of the ZSSP with the launch power and the data frame width results from the
exponential dependence of the required spectral resolution with respect to those parame-
ters [27]. Even though more computationally efficient NFT algorithms have been recently
developed [28–30], the exponential dependence of the number of discrete values of the
continuous spectrum required to represent a waveform using the NFT with respect to the
launch power and the data frame width limits the practical application of the NFT even if
an NFT algorithm reaches the same computational complexity of the fast Fourier transform.

In [31], Zhang and Kschischang showed simulation results of an NFDM subsys-
tem with continuous spectrum modulation in an optical fiber transmission system with
lumped amplification. Optimum performance was obtained using a linear minimum mean-
squared error (LMMSE) receiver to minimize the correlation between the sub-carriers.
Continuous spectrum modulation of the ZSSP has led to high spectral efficiency, but only
over narrow bandwidths (5 GHz) with a low optimum launch power (−9.55 dBm) [31].
Moreover, the maximum propagation distance of this NFDM system was only 960 km,
which is short compared to the propagation distance of transoceanic WDM systems.
Kamalian et al. [32] demonstrated an implementation of the periodic NFT. However,
the performance limits of that algorithm need to be investigated to compare its perfor-
mance against that of conventional NFT algorithms. Those studies considered only a
single channel.

In this work, we investigate the effectiveness of discrete spectrum modulation in
the presence of several fiber impairments that are not included in the ZSSP. The NFT
is used to encode data directly on the eigenvalues of the ZSSP at the transmitter using
an INFT algorithm, which is decoded with an NFT algorithm at the receiver. A form of
discrete spectrum modulation was investigated in the past, where it was referred to as
eigenvalue communication [33]. More recently, several groups have studied variations
of this approach [13,16,31,34–36]. It is important to note that there are other modulation
techniques that use the continuous spectrum alone [37] and some recent work have also
studied the combination of those two techniques, potentially increasing spectral efficiency
as in [38,39]. In [39], experiments with dual polarization showed that the use of NFT only
achieved maxiummu launch power of −9.2 dBm over 3200 km for a system with a total
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transmission rate of 8.4 GBb/s. However, these recent studies indicate that data encoding
using the NFT approach is still not competitive for systems operating in the anomalous
dispersion regime when compared with conventional encoding method similarly to what
we have showed in [27] for a system operating in the normal dispersion regime.

The method used by Dong et al. [35], Hari et al. [16] and Leible et al. [23] is an
on-off-keyed (OOK) modulation format of multiple eigenvalues. Their methods utilize
symbols defined by different combinations of eigenvalues, generating a variety of solitons
of different orders. In [16], the authors investigated the characteristics of symbols formed
with a combination of up to 5 eigenvalues out of 50, choosing only the pulses/symbols
that met specific pulse duration and bandwidth requirements in a single polarization. This
method achieved a spectral efficiency of 3.14 bits/s/Hz. Even though this method does not
encode information on the phase of the discrete spectrum, it does initially set the adjacent
solitons so that they are as out of phase as possible at the transmitter. However, the spectral
efficiency was only calculated at the transmitter and did not take into consideration any
change of the pulse duration or bandwidth that occurs during propagation. This neglect of
the propagation effects is only possible when the dispersion length (Ldisp) is much larger
than the system length, which significantly limits the maximum launch power used in
this system.

Shevchenko et al. [40], Gui et al. [41], and Buchberger et al. [42] investigated the perfor-
mance of high-order modulation in a single soliton, while Bülow et al. [34],
Span et al. [43], Gui et al. [20], and Geisler et al. [44] investigated high-order modula-
tion in multiple eigenvalues of the ZSSP. In the approach described by Bülow et al. [34], the
phases of the spectral function of two eigenvalues of the discrete spectrum of the ZSSP are
modulated. In that study, two independent quadrature phase-shift keying (QPSK) signals
are modulated onto each of the two eigenvalues of second-order solitons. That method
utilizes more degrees of freedom but still has a low spectral efficiency: 0.12 bits/s/Hz at
the receiver.

Gui et al. showed that modulation in b(ζ) leads to an increase in the maximum
propagation distance by about 24% when compared with modulation in the spectral
function qd(ζ) = b(ζ)/ da(ζ)

dζ at BER equal to 10−2 in a 2-Gbaud 16-QAM transmission on
the eigenvalue 0.5j [20]. However, when the linear minimum mean square error (LMMSE)
estimator of the noise in b(ζ) is used, the maximum propagation distance of the system is
further improved by 32%, which leads to a maximum propagation distance of 1400 km.

Bülow et al. showed that independent modulation in b(ζ) leads to a better performance
than modulation in qd(ζ) in a system that consists of 64-QPSK modulated 2-eigenvalue in
an ideal lossless optical fiber system with distributed noise [22]. Since the performance
of that system was limited by the nonlinear coupling of the signal encoded in the two
eigenvalues due to noise, they also observed a significant improvement in the performance
of that systems when the signals encoded in the two eigenvalues were jointly detected.
When joint detection was used, the system with the signal encoded in qd(ζ) of the two
eigenvalues led to a maximum propagation distance of 0.75× Lbreath, where Lbreath is the
breath length of the eigenvalues at the achievable information rate (AIR) of 11 bit/symbol.
That propagation distance is 17% better than that obtained with joint detection of signals
encoded in b(ζ). Those studies also considered only a single channel modulating an
optical carrier.

In [45], Yousefi and Yangzhang showed that optical fiber communication systems with
NFDM have higher achievable information rates when compared with Wavelength-division
multiplexing (WDM). However, that study did not include several of the optical fiber im-
pairments that are not included in the ZSSP. In this paper, we investigate the effectiveness
of using the discrete spectrum of the ZSSP to encode data in optical fiber communications
systems with two eigenvalues, as was proposed in [34], at length scales that are longer than
the dispersion length scale. We utilize a nonlinear frequency division multiplexing (NFDM)
system that was introduced by Yousefi et al. [3,46,47] and a transmitter/receiver model
that was introduced by Bülow et al. [34]. The transmitter/receiver signal is a second-order
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soliton with two QPSK signals per symbol that are modulated independently onto each
of the two eigenvalues. We use this model system to assess the maximum power level
that can be achieved with the system in [34] in the presence of fiber impairments—the
Raman effect [48], third-order dispersion, and fiber losses with lumped gain and ASE
noise from EDFAs. One significant limitation of eigenvalue encoding is the decrease in the
optical intensity along a span length due to the fiber loss in optical transmission systems
with lumped amplification. This decrease in the optical intensity along a span length
effectively changes the local eigenvalues along the direction of propagation. In [49], Bajaj
et al. proposed the use of dispersion decreasing fibers, in which the effective area of the
fiber is decreased along the propagation distance. This approach enabled the mitigation of
the variation of the nonlinear spectrum along a span length, since the magnitude of the
chromatic dispersion decreases while the nonlinear parameter increases along the propaga-
tion direction. However, this system with the proposed dispersion decreasing fibers only
improves the system performance by 2 dB over a propagation distance of 1280 km when
compared to the optimized path-averaged nonlinear parameter approximation that can be
used with conventional fibers [49]. We have not considered the impact of dual-polarization
multiplexing nor polarization-mode dispersion effects in this system, which have been
studied in [36,39,50–54]. The 2-eigenvalue QPSK modulation format has a relatively small
SE, which is about 0.12 bits/s/Hz, but it can in principle be increased by adding more
eigenvalues (higher-order soliton) and/or by using a more complex quadrature amplitude
modulation (QAM) applied to the spectral function of each eigenvalue. However, the
increase in the number of eigenvalues may affect the robustness of this method in the pres-
ence of fiber impairments, since the peak-to-average power ratio (PAPR) of the waveform
is expected to increase with the number of eigenvalues. We also investigated that effect by
adding a third eigenvalue to the NFDM system whose phase is also encoded with another
independent QPSK signals.

2. Theory and Numerical Methods
2.1. Channel Model

The slowly-varying envelope of the optical field in an optical fiber, A(z, t), is described
by the generalized NLSE [38,55]:

i
∂A
∂z

+ i
α(z)

2
A− β2

2
∂2 A
∂t2 − i

β3

6
∂3 A
∂t3 + γ|A|2 A− γTR A

∂|A|2
∂t

= 0, (1)

where β2, β3, γ, and TR, are the chromatic dispersion, third-order dispersion, the Kerr
nonlinearity coefficient, and the Raman parameter, respectively. We set α = 0.2 dB/km,
β2 = −5.75 ps2/km, β3 = 0.7 ps3/km, TR = 3 fs, and γ = 1.6 (W.km)−1, which are
standard parameters for dispersion-shifted fibers (DSF). In the case of a single soliton, the
relevant soliton parameters are:

Ldisp =
T2

0
|β2|

, Ppeak =
1

γLdisp
, (2)

where T0 is the time-scale parameter, Ldisp is the dispersion parameter, and Ppeak is the
peak power of the soliton. Equation (2) defines the relationship between the soliton peak
power and the time window/duration of a soliton pulse, as shown in [13,56].

The normalization parameters used for the Darboux transformation, which are appli-
cable to multiple eigenvalues of the ZSSP, are defined by the following normalization rules:

a′ =
A√
Pn

, z′ =
z

2Ldisp
, and t′ =

t
Tn

, (3)

where a′, z′ and t′ are the normalized amplitude, the normalized propagation distance, and
the normalized time, respectively. The value of Tn is a free parameter used for adjusting
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the transmission rate and consequently the launch power Pn. The relationship between Pn
and Tn is defined by:

Pn =
|β2|
γT2

n
. (4)

In general, the NFT of the signal yields both the discrete and continuous spectral
components. The discrete spectrum corresponds to the solitonic (non-dispersive) compo-
nent of the signal. Hence, a waveform that is generated from the discrete spectrum of the
ZSSP consists of one or more solitons. The discrete spectrum consists of a finite number of
eigenvalues ζ j and an equal number of spectral function values qd(ζ j), where ζ j and qd(ζ j)
are both complex [46].

2.2. Signal Generation

We consider a system with fixed eigenvalues ζ j on the imaginary axis (zero real part)
and we modulated the values of the spectral function qd(ζ j) with QPSK constellations.
As in [34], we used two eigenvalues, ζ1 = 0.6j and ζ2 = 0.3j, to generate a second-order
soliton waveform with an independent QPSK modulation of the value of each respective
spectral function qd(ζ j). Figure 1 shows an example of a second-order soliton waveform.

Figure 1. Single symbol representation: (a) Time domain representation of the second-order soliton.
(b) Eigenvalues represented in the complex plane. Blue square used for ζ1 = 0.6j and red triangle for
ζ2 = 0.3j. (c,d) the spectral function of the respective ζ j, in which the QPSK data is encoded.

The algorithms for the NFT and the inverse NFT (INFT) are based on the Ablowitz-
Ladik method and the Darboux transform, respectively [57]. We use the Ablowitz-Ladik
method combined with the Newton-Raphson method to recover the eigenvalues ζ j and
their respective encoded spectral functions qd(ζ j) at the receiver. The waveform is gen-
erated at the transmitter from the eigenvalues and the spectral functions using the Dar-
boux transform.
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We used the Darboux transform [13] to generate the waveform of the specific second-
order soliton with the information encoded into the phase of the spectral function associated
with each of the two discrete eigenvalues with independent QPSK signals, shifted by
π/4. The waveform in [34] is generated using 64 GSa/s and pulse width of 1 ns, which
corresponds to 64 samples per symbol with −5.4 dBm of launch power (average power)
and an optical filter bandwidth of 33 GHz. This high number of samples per symbol is
needed to accurately generate the waveform associated with the eigenvalues. The symbol
period, the sampling frequency, and the in-line filter bandwidth are rescaled when we
change the normalization parameter Tn. Consequently, Pn is also changed, which defines
the different launch power levels. Figure 2 shows a comparison of three different launch
power signals in the time domain.
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Figure 2. The black curve on the first plot shows a sequence of 4 symbols in the time domain with
launch power of −7 dBm. The red curve in the second plot shows the same sequence but with a
launch power of−1 dBm. The blue curve in the third plot shows the same sequence but with a launch
power of 5 dBm. The fourth plot on the bottom left shows the first symbol of each of those schemes
plotted together for comparison. A launch power increase by a factor of 4 (6 dB) corresponds to a
symbol period decrease by a factor of 2, as defined by the relationship of the normalization factors Tn

and Pn in (4).

2.3. Performance Measurement

At the receiver, the waveform is up-sampled by interpolation to 1024 samples for the
systems with the symbol period TS1 and 2048 samples for the systems with symbol period
TS2 (TS2 = 2TS1), in order to meet the NFT resolution requirements at the receiver. Then,
we use the Ablowitz-Ladik method at the receiver to calculate the discrete spectrum of
the signal and to extract the encoded spectral functions associated with the two received
eigenvalues, which include the propagation effects during the transmission. Systems
with these specifications are currently too computationally intensive to be practical, but
we considered them in this study to determine the performance limits of eigenvalue
modulation, given its potential as a tool for nonlinear mitigation. To extract the eigenvalues
that were transmitted without having to scan over a large area, the Ablowitz-Ladik method
was combined with the Newton-Ralphson method. The combination of these two methods
reduces the computational cost in finding the received eigenvalues, which may undergo
changes due to fiber impairments that are not included in the ZSSP. The same approach
was used in [13,16,34,35,58–60].

We use the error vector magnitude (EVM) of the received spectral function of each
eigenvalue as the performance measure for the optical fiber impairments considered.
The EVM is the root mean square of the deviation of the complex value of a received
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symbol from its expected value on the complex plane [61]. The EVM is a good indicator
of the quality of the received signal in QAM systems. The more spread-out the QPSK
constellations are due to the fiber impairments, the larger the EVM is and, consequently,
the lower the tolerance of that system to ASE noise is. Note that amplitude deviations that
do not affect the phase in QPSK systems increase the EVM without necessarily increasing
the bit error rate.

3. Results

For each of the fiber impairments that we considered, we simulated propagation through
a 1600 km-long optical fiber transmission system with dispersion equal to β2 = −5.75 ps2/km,
and with launch powers from −10 dBm to 15 dBm. The schematic representation of the
systme that we model is shown in Figure 3. The transmitter and receiver used are adjusted
for each launch power, for the same eigenvalues of the ZSSP, because the pulse duration and
the receiver bandwidth are different for each launch power as shown in (3). All simulations
were performed using a random sequence with 256 symbols. Since each symbol carries
4 bits, each random sequence contains 1024 bits. This sequence was extracted from a
pseudorandom binary signal (PRBS11) with length 211 − 1. The same bit string was used
for the simulations with different fiber parameters to facilitate the comparison.

Figure 3. The schematic representation of an NFDM optical fiber transmission system.

3.1. Baseline Simulation

We first carried out a baseline simulation without including any of the physical
impairments of a practical optical fiber transmission system, which corresponds to (1) with
α, β3, and R all set equal to zero. The modulation format contains two independent signals,
each associated with a different eigenvalue, and we obtain the reciprocal of the EVM for
both signals. Figure 4 shows the performance of the baseline simulation as a function of the
propagation distance and the launch power. Figure 4a shows the reciprocal of the EVM of
the first eigenvalue, ζ1 = 0.6j, and Figure 4b shows the reciprocal of the EVM of the second
eigenvalue, ζ2 = 0.3j.
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Figure 4. Performance of the baseline systems as a function of the distance. We show (a) The
reciprocal of the EVM in dB for the eigenvalue ζ1 = 0.6j and (b) The reciprocal of the EVM in dB for
the eigenvalue ζ2 = 0.3j. The level curves in these two sub-figures are for the following values of the
reciprocal of the EVM: 6, 12, 20, 30 and 40 dB.

In principle, the reciprocal of the EVM associated with the eigenvalues of the ZSSP
should not decay as the signal propagates along an ideal lossless fiber. However even
the baseline simulation exhibits some distortion at the receiver at long distances. In
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Figure 4a,b we observed a reduction of the reciprocal of the EVM as the launch power
and the propagation distance increase, which primarily affects the eigenvalue ζ2, because
it is the eigenvalue associated with the broader component of the second-order soliton
waveform. This degradation is due to the finite size of the time window used to represent
the waveform, which leads to both truncation errors and inter-symbol interference (ISI). The
ISI is due to the finite separation between neighbor symbols, which affects the breathing
of the second-order solitons. This ISI includes the interaction among neighboring second-
order solitons that is described in [62]. As the launch power increases, the second-order
soliton breathing period decreases. Therefore, there are more second-order soliton periods
in the same propagation distance and the waveform degrades.

3.1.1. Mitigating Inter-Symbol Interference and Truncation Errors

To investigate the combined effects of ISI and truncation errors, we studied the per-
formance of the same system with twice the symbol period. We denote the symbol period
TS1 as the symbol period of the system that corresponds to that in [34], while the system
with symbol period TS2 = 2TS1 corresponds to the same waveform with twice the symbol
period but with the same sample rate. In Figure 5, we compare the systems with these two
symbol durations and with the different number of points that we used to discretize the
FFTs and the NFT methods that we used in the simulations.
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Figure 5. The reciprocal of the EVM of the baseline system as a function of the launch power when
the system does not include any effects beyond those included in the ZSSP. (a) Results of signal
decoded from the first eigenvalue ζ1 = 0.6j. (b) Results of signal decoded from the second eigenvalue
ζ2 = 0.3j. Results are shown for the system with symbol period equal to TS1 and for the system with
symbol period equal to TS2 = 2TS1.

With symbol period TS1, the reciprocal of the EVM of the second eigenvalue shown in
Figure 5b drops below 6 dB at 11 dBm of launch power at 1600 km of propagation distance,
while the system with twice the symbol period, TS2, still has the reciprocal of the EVM close
to 45 dB at 14 dBm of launch power, in which the EVM is negligible. Since our goal is to
investigate the impact of each of the fiber impairments, we study systems with symbol
periods TS1 and TS2, which allows us to separate the effects that are due to ISI from the
other effects. The results in Figure 5 show that convergence was achieved for the case
with TS = TS1 using 210 points to discretize the waveform even with 12 dBm of launch
power. These results also show that convergence was achieved for the case with TS = TS2
using 211 points to discretize the waveform even with 12 dBm of launch power. To ensure
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accuracy in all the simulation results, we discretized all the waveforms used in this study
with 212 points.

The value of the reciprocal of the EVM in Figure 5a,b increases when the symbol
period doubles with the same sample rate, at the expense of decreasing the SE by half. This
performance improvement results from a more accurate representation of the second-order
soliton as the symbol period increases, which reduces the ISI due to the tails of adjacent
symbols. Since there was no noticeable improvement in the performance when the number
of points used to discretize the FFT and the NFT was increased, the number of points was
not a limiting factor in the performance of the system. There is a background error in
the received signal in Figure 5 that causes the reciprocal of the EVM to oscillate between
45 dB and 60 dB when the symbol period is equal to TS2 due to discretization errors in the
algorithms. However, the EVM is negligible in that case.

3.1.2. Constellation Analysis

Figure 6a–d show the impact of ISI on the waveform and on the decoded QPSK signal.
The waveform is transmitted over 1600 km of propagation distance with 11 dBm of launch
power . The results shown in Figure 6a–c use TS = TS1, and the results shown in Figure 6d–f
use TS = TS2.
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Figure 6. Simulation of the baseline system at 1600 km of propagation distance with launch power
11 dBm. (a–c) Results with TS = TS1. (d–f) Results with TS = TS2 for the same launched symbol. (a,d)
Received waveform of one symbol of the sequence. (b,e) Received eigenvalues. (c,f) Normalized
received spectral function evaluated at the two eigenvalues: qd(ζ1) in blue circles and qd(ζ2) in
red crosses.

Figure 6b shows eigenvalues did not change significantly after 1600 km of fiber
propagation with 11 dBm of launch power. So that the eigenvalues were properly recovered
at the receiver and are not affected by inter-symbol interference with the shorter symbol
period TS1. The eigenvalue ζ2 = 0.3j is shifted more than the eigenvalue ζ1 = 0.6j because
the portion of the waveform more closely related to the eigenvalue ζ2 is significantly
broader than the portion of the waveform associated to ζ1. For this reason, the eigenvalue
ζ2 = 0.3j is more susceptible to suffer from ISI than the eigenvalue ζ1 = 0.6j when the
symbol period is reduced. The higher susceptibility to errors of the eigenvalue ζ2 = 0.3j
is shown in Figure 6c, in which the constellations of qd(ζ1) (blue) are significantly less
dispersed than the constellations of qd(ζ2) (red). The same symbols were launched in the
simulations with TS = TS1 and in the simulations with TS = TS2 in Figure 6a,b. Since the
waveforms with TS = TS1 and with TS = TS1 in this comparison have the same launched
power, they have different peak powers and, consequently, different breathing periods.
Therefore, after propagating 1600 km along the fiber, the received waveforms are likely to
be different.
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3.2. Raman Effect

Figure 7 shows how the Raman effect limits the launch power of a system with 1600 km
of propagation distance [48]. In this study, we do not include any other effect that is not
included in the ZSSP. ISI limits the performance of this system with symbol period TS1 for
launch power levels above 11 dBm at the 1600 km of propagation distance even when no
other fiber impairment is included. Hence, we carried out simulations with symbol periods
equal to TS1 and TS2 in order to isolate its impact.

We compare the case with symbol period TS1, which corresponds to that in [34], and
the case with the doubled symbol period TS2 with their corresponding baseline cases. The
Raman effect has a stronger impact in the performance of the eigenvalue ζ1 = 0.6j in the
case with symbol period TS1, since this eigenvalue is associated with a higher peak power
than ζ2 = 0.3j. However, when the symbol period is TS2, the Raman effect significantly
impacts both eigenvalues, since they have higher peak power for the same launch power
when compared with the case with symbol period TS1. In a system with either of these two
symbol periods, the Raman effect limits the performance of the system to launch powers
below 11 dBm.
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Figure 7. The reciprocal of the EVM as a function of the launch power when the system only includes
the Raman effect. (a) Results of a signal that is decoded from the first eigenvalue ζ1 = 0.6j. (b) Results
of a signal that is decoded from the second eigenvalue ζ2 = 0.3j. We show results for the system with
symbol period equal to TS1 and for the system with symbol period equal to TS2 = 2TS1.

The system with the smaller symbol period TS1 outperforms the system with the larger
symbol period TS2 as shown in Figure 7a. This performance difference occurs because the
simulation with symbol period TS2 has significantly higher peak power than that of the
simulation with TS1 to correspond to the same launch power. The Raman effect causes a
shift in the spectrum of the waveform towards longer wavelengths. The narrow portion
of the waveform with higher instantaneous power, which is associated with the larger
eigenvalue, moves more slowly due to changes in its group velocity due to the Raman
effect [63].
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Constellation Analysis

Since this coding scheme generates a second-order soliton, the portion of the waveform
associated with each individual eigenvalue may propagate with a different group velocity
when subjected to fiber impairments such as the Raman effect. The Raman effects disturbs
the equilibrium of the interaction forces of the individual solitons in the second-order
soliton. As a consequence, the second-order soliton breaks apart into two individual
solitons [64,65].

When the propagation distance is long enough or the launch power is high enough, the
main lobe of one of the two components of the second-order soliton reaches the neighboring
symbol due to the Raman effect. Once that happens, the ISI due to the Raman effect leads
to errors in the symbol decoding. Before the total collapse of this modulation scheme due
to ISI, the pulse shift inside the symbol time window due to the Raman effect changes the
amplitude of the spectral function q(ζ) of at least one of the eigenvalues. This change in
the amplitude of q(ζ) increases linearly with the propagation distance until the onset of ISI
precludes the use of QAM with multiple levels of amplitude modulation and, consequently,
limits any further increase in the SE.

The larger shift in the amplitude of the spectral functions for the case in which the
symbol period is equal to TS2, compared to that in which the symbol period is equal to TS1,
occurs because the former system with the larger symbol period has a higher peak power
for the same launch power.

The changes in the value of the eigenvalues due to the Raman effect do not make
them cross the threshold of inter-eigenvalue interference, where one eigenvalue would
be mistakenly taken as the other, at the propagation distance and launch powers that we
considered. However, the Raman effect significantly changes the eigenvalue ζ1 from its
original value 0.6j. Hence, the Raman effect would significantly limit the performance of
modulation schemes in which information is encoded in the location of the eigenvalues in
the complex plane.

Note, however, that most of the shift in the spectral function of the eigenvalues q(ζ) is
deterministic and could be taken into account when designing the symbols to optimize the
choice of the magnitude and the phase, as long as this shift is not large enough to lead to
decoding errors due to ISI.

The constellations of qd(ζ1), shown in blue in Figure 8c, maintains approximately
the same phase for ζ1 = 0.6j, but have different amplitudes due to the Raman effect.
The 16 different symbols have four starting patterns determined by the phase difference
between the two components of the second-order soliton. This phase difference determines
the shape of the waveform at the starting point of the breathing period. In Appendix A,
we address how one can recognize these patterns and how one can mitigate for those
deterministic shifts in the amplitude of the phase function before the onset of decoding
errors due to ISI.

In contrast to the constellations of qd(ζ1), the constellations of qd(ζ2), shown in red in
Figure 8c, are spread equally in both amplitude and phase. At this propagation distance
and launch power, the ISI that is observed in the baseline simulation is the primary cause
of the spread of the constellatons of qd(ζ2).

For the system with symbol period TS2, in which the ISI is virtually absent, the
constellations of both qd(ζ1) and qd(ζ2) are altered by the Raman effect. The constellations
of qd(ζ1) are more strongly affected by the Raman effect than the constellations of qd(ζ2),
because the former is related to the component of the second-order soliton that has a higher
peak power than the latter.
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Figure 8. Simulation with the Raman effect at 1600 km of propagation distance with 9 dBm of launch
power. (a–c) Results for the symbol period TS1. (d–f) Results for the symbol period TS2. (a,d) Received
waveform for one symbol of the sequence. (b,e) Received eigenvalues. (c,f) Normalized received
spectral function constellations, qd(ζ1) (blue circles) and qd(ζ2) (red crosses).

3.3. Third-Order Dispersion

The impact of third-order dispersion in the eigenvalue encoding is also investigated
with the two different symbol periods TS1 and TS2 when it is added to the baseline sim-
ulation. Figure 9 shows the impact of third-order dispersion as the power increases. For
symbol period TS2, third-order dispersion with 12 dBm of launch power causes a decrease
in the reciprocal of the EVM by more than 30 dB when compared to the baseline simulation
without any fiber impairments. Third-order dispersion alone can cause the 1600-km-long
communication system to fail at launch powers higher than 13 dBm. The performance
degradation due to third-order dispersion of the eigenvalue encoding as the launch power
increases is due to the increase of the bandwidth with the launch power that is required to
generate a second-order soliton waveform.
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Figure 9. The reciprocal of the EVM as a function of the launch power when only the third-order
dispersion is included. (a) Results of the signal that is decoded from the first eigenvalue ζ1 = 0.6j.
(b) Results of the signal that is decoded from the second eigenvalue ζ2 = 0.3j. Results are shown for
the system with a symbol period equal to TS1 and for the system with a symbol period that is equal
to TS2 = 2TS1.
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Constellation Analysis

To study how the third-order dispersion impacts the signal, we obtained the QPSK
constellations and the waveforms shown in Figure 10. The eigenvalue locations do not shift
at 12 dBm of launch power after 1600 km of propagation distance. However, the spectral
function constellations undergo a significant spread, which causes the reciprocal of the
EVM to decrease significantly.

The third-order dispersion causes a second-order soliton to shift in the time domain,
resulting in a different amplitude at the discrete spectrum constellation. This spread in
amplitude affects the possibility of more complex QAM formats, and thus limits the SE.
The maximum launch power due to the third-order dispersion is 13 dBm with symbol
period TS2.
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Figure 10. Simulation results with a symbol period equal to TS1 at 1600 km of propagation distance.
The system includes only the third-order dispersion. (a–c) Results a with launch power of 1 dBm.
(d–f) Results with a launch power of 12 dBm. (a,d) Received waveform of one symbol of the sequence.
(b,e) Received eigenvalues. (c,f) Normalized received spectral function constellations, qd(ζ1) (blue
circles) and qd(ζ2) (red crosses).

3.4. Lumped Gain

To address the impact of fiber losses with lumped gain from the EDFAs, it is necessary
to adjust the launched waveform because the effective nonlinearity of the fiber is lower
than that of a lossless fiber with the same launch power. This decrease in the effective
nonlinearity occurs because the average power of the waveform decreases as the waveform
propagates through a fiber with losses. One approach to mitigate the effect of losses is to
calculate an average/effective value of the nonlinear coefficient of the fiber and generate the
waveform based on that new effective nonlinearity coefficient, as shown in Equation (5),
where γ is the fiber nonlinear coefficient, γeff is the new calculated effective nonlinear
coefficient and G the total loss over the fiber span [15].

γeff = γ
G− 1
G ln G

. (5)

We calculated that a launch power increase of 5.7 dB is needed for a 80 km fiber span
with an attenuation of 0.2 dB/km when compared to the ideal lossless fiber transmission
system. The effective nonlinear coefficient was used in both the INFT encoding at the
transmitter and the NFT decoding at the receiver when fiber losses and lumped gain from
EDFAs were included in the simulations. Because the effective nonlinear coefficient in
the case with lumped amplification is lower than that of a lossless fiber, the same launch
power does not correspond to the same symbol rate in both of these cases as shown in
Table 1. The effective nonlinear coefficient can be optimized for a particular launch power
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and waveform duration because the dependence of the breathing period of the solitons
on the launch power. Further studies need to be conducted to determine the potential
performance enhancement that can result from this optimization. However, we expect
that performance optimization to be limited because the eigenvalues and their respective
spectral functions vary with the location of the waveform along any given span of a lossy
fiber transmission system and that variation increases rapidly with the launch power.

Table 1. Symbol rate of the sistems considered in this study for selected values of the launch power.

SR (GBd)
Launch Power (dBm)

Baseline, Raman, Dispersion, Noise Lumped Gain, All Effects

0.32 −12.7 −6.93

0.45 −9.7 −3.93

0.63 −6.7 −0.93

0.89 −3.7 2.07

1.26 −0.7 5.07

1.99 3.3 9.07

2.81 6.3

3.97 9.3

5.61 12.3

7.92 15.3

The results shown in Figure 11, with fiber losses and lumped gain from EDFAs, show
a significant decrease of the reciprocal of the EVM with an increase of the launch power.
This degradation is due to the breakdown of the lossless fiber approximation. This effect is
symbol dependent and the error is larger for symbols with largeer PAPR.
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Figure 11. The reciprocal of the EVM as a function of the launch power when the system includes
only fiber losses with lumped gain from EDFAs. (a) Results of the signal decoded from the first
eigenvalue ζ1 = 0.6j. (b) Results of the signal decoded from the second eigenvalue ζ2 = 0.3j. We
show results for the system with a symbol period equal to TS1 and for the system with a symbol
period equal to TS2 = 2TS1.
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Constellation Analysis

Because the performance with fiber losses and lumped gain from EDFAs decreases
rapidly with the increase of the launch power, we examined the effect of fiber losses and
lumped gain in the waveform generated by a symbol that was strongly affected by fiber
losses and lumped gain. Figure 12 shows results for −0.25 dBm of launch power when
fiber losses and lumped gain are included. The constellations for both simulations with
symbol period TS1 and symbol period TS2 are almost equally affected because the waveform
degradation is not due to ISI. The eigenvalues shown in Figure 12b,e are disturbed even
at −0.25 dBm of launch power, while the qd(ζ j) constellations are significantly spread
out, reducing the reciprocal of the EVM to 10 dB at this low launch power. The signal
degradation that affects both eigenvalues is due to the significant deviation of the local
eigenvalues of the ZSSP along the fiber due to the decrease in the signal power produced
by the losses in the fiber. For that reason, the maximum launch power due to fiber losses
with lumped gain is 3 dBm.
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Figure 12. Simulation results with 1600 km of propagation distance and −0.25 dBm of launch power.
The system includes only fiber losses and lumped gain from EDFAs. (a–c) Results with symbol
period equal to TS1. (d–f) Results with symbol period equal to TS2. (a,d) Received waveform of one
symbol of the sequence. (b,e) Received eigenvalues. (c,f) Normalized received spectral function
constellations, qd(ζ1) (blue circles) and qd(ζ2) (red crosses).

Due to errors in the decoding of some of the transmitted symbols using discrete
spectrum modulation, Bülow et al. proposed to drop the symbols that are more prone to
errors [34]. In that approach to mitigate the errors due to losses and lumped amplifica-
tion, the symbols with the highest EVM, which correspond to those with high PAPR, are
excluded. This procedure decreases the EVM at the expense of the data rate. Another
approach to mitigate the impact of fiber losses and lumped gain from EDFAs in the discrete
spectrum modulation is to use distributed Raman amplification. Hari et al. have shown
that eigenvalues are more robust if distributed Raman amplification is used in a long-haul
system, as opposed to EDFA systems [13]. However, distributed Raman amplification
schemes have significantly higher cost and much lower energy efficiency when compared
to EDFA systems [66,67].

3.5. Ase Noise

In this sub-section, we investigate the impact of ASE noise on the performance of
discrete spectrum modulation. This system consists of 20 spans of 80 km with an EDFA at
the end of each span. Since the purpose of this study is to characterize the impact of optical
noise in the performance of eigenvalue modulation, ASE noise is added at the end of each
span, consistent with the amount of ASE noise that is generated in a fiber transmission
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system with losses and lumped amplification by EDFAs. However, this case is studied
without including the losses in the fiber model. To limit the noise bandwidth, the system
used an optical filter with a bandwidth of 33 GHz for the case with TS1 = 1 ns and a launch
power of −5.4 dBm to limit the ASE noise. The symbol period, the sampling frequency,
and the in-line filter bandwidth are rescaled with the launch power.

Figure 13 shows the reciprocal of the EVM as a function of the launch power for
both eigenvalues and for symbol periods equal to TS1 and TS2. The ASE noise limits the
maximum power that can be launched in the two-eigenvalue system. The reciprocal of
the EVM of the signal encoded in the eigenvalue ζ1 = 0.6j drops below 6 dB at 1 dBm of
launch power, while the reciprocal of the EVM of the signal encoded in the eigenvalue
ζ2 = 0.3j drops below 6 dB at 6.5 dBm of launch power. The reason why the signal encoded
in the eigenvalue ζ1 = 0.6j is less robust to nonlinear noise [68] when compared with
the signal encoded in the eigenvalue ζ2 = 0.3j is because the former is associated with
the second-order soliton component with higher peak power than the latter. The more
significant degradation in the performance of the larger eigenvalues due to ASE noise in
these results is consistent with the observations in other recent studies [39,51].
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Figure 13. The reciprocal of the EVM as a function of the launch power when the system includes
only ASE noise from EDFAs. (a) Results of the signal decoded from the first eigenvalue ζ1 = 0.6j.
(b) Results of signal decoded from the second eigenvalue ζ2 = 0.3j.

The impact of optical noise on the discrete spectrum constellation is to spread the
amplitude and phase, as well as to displace the location of the eigenvalues. The noise adds
more power to the tails of the solitons as well as timing jitter to the pulse peak, leading to a
performance degradation, as shown in Figure 13.

3.6. All Impairments Combined

When all the impairments are considered, the performance is limited by the com-
bination of all these effects. However, the losses along the fiber propagation that are
compensated by the lumped gain from EDFAs dominates the overall performance degrada-
tion, as shown in Figure 14. In essence, the distributed losses have the effect of changing
the local eigenvalues of the ZSSP along the propagation distance, which deviates from
those of the lossless propagation model of the ZSSP as the launch power increases. The
maximum launch power due to all these combined impairments is 2 dBm.

Figure 15 shows the case with TS = TS2. In this case, we have effectively removed the
ISI that exists in the baseline system when TS = TS1. The performance with the symbol
period TS2 is lower by 2 dB when compared to the performance with TS1 because the former
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has twice the symbol period, which means higher peak power, when compared with the
latter for the same launch power.
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Figure 14. The reciprocal of the EVM as a function of the launch power when all the effects are
included and the symbol period is equal to TS1. (a) Results of the signal that is decoded from the first
eigenvalue ζ1 = 0.6j. (b) Results of the signal that is decoded from the second eigenvalue ζ2 = 0.3j.
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Figure 15. The reciprocal of the EVM as a function of the launch power when all the effects are
included and the symbol period is equal to TS2 = 2TS1. (a) Results of the signal decoded from the
first eigenvalue ζ1 = 0.6j. (b) Results of the signal decoded from the second eigenvalue ζ2 = 0.3j.

We extended this study to include third-order solitons. Due to excessive ISI in this
system, it was not possible to use a third-order soliton with symbol period TS1. This means
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that the increase in the SE enabled by an increase in the number of eigenvalues is partially
negated by the need to increase the symbol period for the same launch power. In Figure 16,
we shown results for a third-order solition system with symbol period TS2. The maximum
launch power due to all the combined impairments in this third-order soliton system is
0 dBm.
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Figure 16. The reciprocal of the EVM as a function of the launch power when all the effects are
included and the symbol period is equal to TS2. (a) Results of the signal that is decoded from the first
eigenvalue ζ1 = 0.7j. (b) Results of the signal that is decoded from the second eigenvalue ζ2 = 0.45j.
(c) Results of the signal that is decoded from the third eigenvalue ζ3 = 0.2j.

Constellation Analysis

We compare the impact of each effect on the eigenvalue locations and the spectrum
constellations at the receiver with the same launch power (around 0 dBm). The constella-
tions reveal that the Raman effect and third-order dispersion have almost no effects at these
low launch powers. The fiber losses with lumped gain and the noise are the most significant
effects. Figure 17 shows these simulations with symbol period TS2 and the constellations
for each effect at the receiver with the same launch power level. In Figure 18 we show the
constellations of a third-order soliton system with the same launch power, period, and
propagation distance shown in Figure 17 for a second-order soliton system.

As observed in the results shown in this sub-section, the QPSK constellations of the
systems in which only ASE noise is included are worse than when all the impairments are
combined due to the excess nonlinear noise accumulation in the former when compared to
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the later. In practice, the signal and noise attenuation limit the nonlinear noise accumulation
as included in the more realistic case in which all the effects are included. Since the impact
of the Raman effect and the chromatic dispersion are not significant at 0 dBm of launch
power, those effects did not cause any significant deviation of the QPSK constellations
from the baseline results as shown in Figures 17 and 18. Additional studies optimizing
the location of the eigenvalues and the symbol period would need to be carried out to
determine the absolute performance limit of this NFDM system with discrete eigenvalues
with respect to the fiber impairments, but the maximum launch power in the optimized
system is expected to decrease with the number of eigenvalues.
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Figure 17. Simulation results with 1600 km of propagation distance and 0 dBm of launch power
for second-order solitons.. These results were obtained with a symbol period equal to TS2. The
first column shows a waveform of a sampled symbol of the transmitted sequence for each effect
respectively. The second column shows the received eigenvalues. The third column shows the
normalized received spectral function constellations, qd(ζ1) (blue circles) and qd(ζ2) (red crosses).

Figure 18. Cont.
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Figure 18. Simulation results with 1600 km of propagation distance and 0 dBm of launch power for
third-order solitons. These results were obtained with a symbol period equal to TS2. The first column
shows a waveform of a sampled symbol of the transmitted sequence for each effect, respectively. The
second column shows the received eigenvalues. The third column shows the normalized received
spectral function constellations, qd(ζi) for each of the three eigenvalues.

4. Conclusions

We show that in an ideal lossless fiber without ASE noise, the Raman effect is the
limiting factor of the performance of a modulation scheme based on a two-eigenvalue
spectrum modulation, since the Raman effect causes a second-order soliton to break apart,
and at least one of the two components of the second-order soliton shifts into a neighboring
symbol, leading to ISI. For this modulation format, this ISI occurs when the launch power
is higher than 11 dBm when the signal propagates longer than 1600 km. This result sug-
gests that the Raman effect could significantly limit the performance of multi-eigenvalue
modulation formats that could be investigated to increase the SE even in systems with
distributed gain. We also show that in practical systems with fiber losses and lumped gain
and ASE noise from EDFAs, those effects limit the maximum launch power to about 2 dBm.
The performance limit of the discrete spectrum modulation format is primarily due to
optical fiber losses combined with lumped amplification, which leads to a large deviation
of the signal evolution in the optical fiber transmission system from that in the lossless fiber
model that is described by the ZSSP. To enhance the SE of eigenvalue spectrum modulation,
it would be necessary to increase the number of eigenvalues. However, an increase in the
number of eigenvalues requires a longer symbol period due to ISI and, consequently, a
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higher peak power for the same launch power, which reduces the effectiveness of eigen-
value spectrum modulation. Consequently, the impact of these effects must be considered
in any realistic assessment of a system that uses modulation of the discrete spectrum of the
ZSSP. We suggest that further studies should be done with alternative decoding methods
such as signal processing at the receiver based on neural networks [54,69] and alternative
encoding methods to modulate the spectral function of the eigenvalues [20,22], to verify
their robustness to the fiber impairments at high launch power levels in long-haul systems,
including polarization-mode dispersion effects as well as dual-polarization schemes. All
those studies consisted of a single NFDM signal modulating an optical carrier, which corre-
sponds to a single channel. Unlike conventional WDM systems, in which a large number
of independently modulated carriers are used, one cannot add independently modulated
NFDM signals in different carriers without using some kind of joint detection scheme be-
cause those channels would be coupled by the nonlinear Kerr effect [31]. For multi-channel
NFDM systems to be competitive with WDM systems, computationally intensive joint
detection algorithms would need to be developed. Until an effective multiplexing scheme
for NFDM is developed that allows that communication system to be scaled up over a wide
bandwidth as in commercially available WDM systems, optimizations of single-channel
NFDM systems have limited practical applications.
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Appendix A. Pre-Compensation For Raman Shift

The Raman effect breaks apart the second-order soliton and causes the two components
of a second-order soliton to drift apart inside the symbol time window. Different symbols
with different phases encoded on each eigenvalue will evolve differently, causing the drift
to be different for each symbol. This effect is deterministic and can be pre-compensated
with a pulse shift at the transmitter. Figure A1 compares the constellation of a regular and
a pre-compensated constellation at the receiver when the Raman effect is the only fiber
impairment that is considered.

To compensate for the Raman effect, we can adjust the original constellation with a
time and phase shift that is sufficient to negate the expected shift in the phase at the receiver.
This phase shift depends on the phase difference between the eigenvalues. In Figure A2,
we show the results of this technique. This pre-compensation method is effective up to the
launch power level in which the time-shift in the eigenvalues due to the Raman effect is
not large enough to lead to errors due to ISI.
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Figure A1. Constellations recovered at the receiver after 1600 km of propagation distance with the
Raman effect and 10.25 dBm launch power. (a) Results of the received constellations without using
any initial compensation. The dots with different colors show all the constellations that arise from the
pattern dependence due to the Raman effect. (b) Results of the received constellations with the use of
a pre-equalizer technique.
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Figure A2. Waveform of all 16 possible symbols at the receiver when the phase shift is not compen-
sated. There are four different patterns for each initial phase that is encoded in the two eigenvalues.
The peak value of the waveforms are shown on the vertical axes in milliwatts, and the corresponding
center time of the waveforms relative to the group is shown on the horizontal axes in picoseconds.
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