High Efficiency and High Bandwidth Double-Cladding Waveguide Photodetector Array for 400 Gbit/s Communication
Abstract
:1. Introduction
2. Design and Simulation
3. Chip Fabrication
4. Measurements and Result Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Liu, H.; Urata, R.; Zebian, S. Scaling large data center interconnects: Challenges and solutions. Opt. Fiber Technol. 2018, 44, 61–68. [Google Scholar] [CrossRef]
- Miguelez, P. What Applications are Driving Higher Capacity in Access? In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (ofc), San Diego, CA, USA, 11–15 March 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Runge, P.; Beckerwerth, T.; Troppenz, U.; Gruner, M.; Boerma, H.; Mohrle, M.; Schell, M. InP-Components for 100 GBaud Optical Data Center Communication. Photonics 2021, 8, 18. [Google Scholar] [CrossRef]
- Johari, A.; Bhatnagar, A.; Naithani, S.; Kaushik, B.K. Performance analysis of Vertical Photodetector for Efficient on Chip Optical Interconnect. In Proceedings of the Novel Optical Systems, Methods, and Applications XXIII, online, 24 August–4 September 2020; Hahlweg, C.F., Mulley, J.R., Eds.; Spie-Int Soc Optical Engineering: Bellingham, MA, USA, 2020; Volume 11483, p. 114830L. [Google Scholar]
- Lam, C.F.; Liu, H.; Koley, B.; Zhao, X.; Kamalov, V.; Gill, V. Fiber Optic Communication Technologies: What’s Needed for Datacenter Network Operations. IEEE Commun. Mag. 2010, 48, 32–39. [Google Scholar] [CrossRef]
- Kachris, C.; Kanonakis, K.; Tomkos, I. Optical Interconnection Networks in Data Centers: Recent Trends and Future Challenges. IEEE Commun. Mag. 2013, 51, 39–45. [Google Scholar] [CrossRef]
- Bottacchi, S.; Beling, A.; Matiss, A.; Nielsen, M.L.; Steffan, A.G.; Unterboersch, G.; Umbach, A. Advanced Photoreceivers for High-Speed Optical Fiber Transmission Systems. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1099–1112. [Google Scholar] [CrossRef]
- Nada, M.; Nakajima, F.; Yoshimatsu, T.; Nakanishi, Y.; Kanda, A.; Shindo, T.; Tatsumi, S.; Matsuzaki, H.; Sano, K. Inverted p-down Design for High-Speed Photodetectors. Photonics 2021, 8, 39. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Kishk, A. Design of high speed InGaAs/InP one-sided junction photodiodes with low junction capacitance. Opt. Commun. 2019, 437, 321–329. [Google Scholar] [CrossRef]
- Achouche, M.; Glastre, G.; Caillaud, C.; Lahrichi, M.; Chtioui, M.; Carpentier, D. InGaAs Communication Photodiodes: From Low-to High-Power-Level Designs. IEEE Photonics J. 2010, 2, 460–468. [Google Scholar] [CrossRef]
- Li, C.; Xue, C.; Liu, Z.; Cheng, B.; Li, C.; Wang, Q. High-Bandwidth and High-Responsivity Top-Illuminated Germanium Photodiodes for Optical Interconnection. IEEE Trans. Electron. Devices 2013, 60, 1183–1187. [Google Scholar] [CrossRef]
- Ito, H.; Kodama, S.; Muramoto, Y.; Furuta, T.; Nagatsuma, T.; Ishibashi, T. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 709–727. [Google Scholar] [CrossRef]
- Yin, T.; Cohen, R.; Morse, M.M.; Sarid, G.; Chetrit, Y.; Rubin, D.; Paniccia, M.J. 31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate. Opt. Express 2007, 15, 13965–13971. [Google Scholar] [CrossRef]
- Lin, X.; Natrella, M.; Seddon, J.; Graham, C.; Renaud, C.C.; Tang, M.; Wu, J.; Liu, H.; Seeds, A.J. High performance waveguide uni-travelling carrier photodiode grown by solid source molecular beam epitaxy. Opt. Express 2019, 27, 37065–37086. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Gao, J.; Jung, D.; Bowers, J.; Beling, A. 40 Gbit/s waveguide photodiode using III-V on silicon heteroepitaxy. Opt. Lett. 2020, 45, 2954–2956. [Google Scholar] [CrossRef]
- Shao-Qing, L.; Xiao-Hong, Y.; Yu, L.; Bin, L.; Qin, H. Design and fabrication of a high-performance evanescently coupled waveguide photodetector. Chin. Phys. B 2013, 22, 108503. [Google Scholar] [CrossRef]
- Ko, Y.-H.; Choe, J.-S.; Han, W.S.; Lee, S.-Y.; Han, Y.-T.; Jung, H.-D.; Youn, C.J.; Kim, J.-H.; Baek, Y. High-speed waveguide photodetector for 64 Gbaud coherent receiver. Opt. Lett. 2018, 43, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liang, S.; Xie, X.; Xu, J.; Guo, L.; Zhu, H.; Wang, W. Zero-bias 32 Gb/s evanescently coupled InGaAs/InP UTC-PDs. Opt. Laser Technol. 2018, 101, 457–461. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; An, J.; Zhang, J.; Huang, N.; He, W.; Wang, Y.; Yin, X.; Wang, H.; Li, J.; et al. Eight-wavelength receiver optical subassembly based on silica hybrid integrated technology. Opt. Eng. 2019, 58, 097101. [Google Scholar] [CrossRef]
- Okimoto, T.; Yagi, H.; Ebihara, K.; Yamazaki, K.; Okamoto, S.; Ohkura, Y.; Horino, K.; Ashizawa, K.; Ekawa, M.; Yoneda, Y. InP-based PIC integrated with Butt-joint Coupled Waveguide p-i-n PDs for 100GBaud Coherent Networks. In Proceedings of the 2021 Optical Fiber Communications Conference and Exposition (OFC), San Francisco, CA, USA, 6–10 June 2021; IEEE: New York, NY, USA, 2021; p. F2C.6. [Google Scholar]
- Kato, K.; Hata, S.; Kozen, A.; Oku, S.; Matsumoto, S.; Yoshida, J. 22 Ghz Photodiode Monolithically Integrated with Optical Wave-Guide on Semiinsulating Inp Using Novel Butt-Joint Structure. Electron. Lett. 1992, 28, 1140–1142. [Google Scholar] [CrossRef]
- Achouche, M.; Magnin, V.; Harari, J.; Carpentier, D.; Derouin, E.; Jany, C.; Decoster, D. Design and fabrication of a p-i-n photodiode with high responsivity and large alignment tolerances for 40-Gb/s applications. IEEE Photonics Technol. Lett. 2006, 18, 556–558. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, F.; Ye, H.; Wang, S.; Chu, Y.; Han, Q. High Efficiency and High Bandwidth Double-Cladding Waveguide Photodetector Array for 400 Gbit/s Communication. Photonics 2022, 9, 703. https://doi.org/10.3390/photonics9100703
Xiao F, Ye H, Wang S, Chu Y, Han Q. High Efficiency and High Bandwidth Double-Cladding Waveguide Photodetector Array for 400 Gbit/s Communication. Photonics. 2022; 9(10):703. https://doi.org/10.3390/photonics9100703
Chicago/Turabian StyleXiao, Fan, Han Ye, Shuai Wang, Yimiao Chu, and Qin Han. 2022. "High Efficiency and High Bandwidth Double-Cladding Waveguide Photodetector Array for 400 Gbit/s Communication" Photonics 9, no. 10: 703. https://doi.org/10.3390/photonics9100703
APA StyleXiao, F., Ye, H., Wang, S., Chu, Y., & Han, Q. (2022). High Efficiency and High Bandwidth Double-Cladding Waveguide Photodetector Array for 400 Gbit/s Communication. Photonics, 9(10), 703. https://doi.org/10.3390/photonics9100703