Compact, High Extinction Ratio, and Low-Loss Polarization Beam Splitter on Lithium-Niobate-On-Insulator Using a Silicon Nitride Nanowire Assisted Waveguide and a Grooved Waveguide
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Loncar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Li, Z.; Lyu, W.; Lyu, Y.; Zeng, C.; Zhang, Z.; Zhang, S.; Zhang, Y.; Li, H.; et al. Flat Optical Frequency Comb Generation Based on Monolithic Integrated LNOI Intensity and Phase Modulator. Photonics 2022, 9, 495. [Google Scholar] [CrossRef]
- Wang, J.; Chen, P.; Dai, D.; Liu, L. Polarization coupling of x-cut thin film lithium niobate based waveguides. IEEE Photon. J. 2020, 12, 2200310. [Google Scholar] [CrossRef]
- Yang, G.; Sergienko, A.; Ndao, A. Plasmonic loss-mitigating broadband adiabatic polarizing beam splitter. Opt. Lett. 2022, 47, 629–632. [Google Scholar] [CrossRef]
- Chung, H.; Lee, C.; Huang, K.; Yang, S.; Wang, K.; Solntsev, A.; Sukhorukov, A.; Setzpfandt, F.; Chen, Y. Broadband on-chip polarization mode splitters in lithium niobate integrated adiabatic couplers. Opt. Express 2019, 27, 1632–1645. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Dai, D.; Liu, L.; Shi, Y. Proposal for an ultra-broadband polarization beam splitter using an anisotropy-engineered Mach-Zehnder interferometer on the x-cut lithium-niobate-on-insulator. Opt. Express 2020, 28, 10899–10908. [Google Scholar] [CrossRef]
- Deng, C.; Lu, M.; Sun, Y.; Huang, L.; Wang, D.; Hu, G.; Zhang, R.; Yun, B.; Cui, Y. Broadband and compact polarization beam splitter in LNOI hetero-anisotropic metamaterials. Opt. Express 2021, 29, 11627–11634. [Google Scholar] [CrossRef]
- Dai, D. Advanced passive silicon photonic devices with asymmetric waveguide structures. Proc. IEEE 2018, 106, 2117–2143. [Google Scholar] [CrossRef]
- Fukuda, H.; Yamada, K.; Tsuchizawa, T.; Watanabe, T.; Shinojima, H.; Itabashi, S.I. Ultrasmall polarization splitter based on silicon wire waveguides. Opt. Express 2006, 14, 12401–12408. [Google Scholar] [CrossRef]
- Wu, H.; Tan, Y.; Dai, D. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt. Express 2017, 25, 6069. [Google Scholar] [CrossRef]
- Dai, D.; Bowers, J.E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt. Express 2011, 19, 18614–18620. [Google Scholar] [CrossRef]
- Jiang, R.; Xu, Y.; Dong, Y.; Zhang, B.; Ni, Y. Integrated TM-through/TE-converted polarization beam splitter based on z-cut lithium niobate-on-insulator platform. Optik 2022, 255, 168690. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Fu, X.; Yang, L. Compact, Broadband and Low-Loss Polarization Beam Splitter on Lithium-Niobate-On-Insulator Using a Silicon Nanowire Assisted Waveguide. IEEE Photon. J. 2020, 12, 6601906. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, X.; Li, H.; Lu, C.; Zhang, Y.; Liu, S.; Zheng, Y.; Chen, X. Lithium Niobate Thin Film Polarization Beam Splitter Based on Asymmetric Directional Coupling. J. Lightwave Technol. 2022, 1–5. [Google Scholar] [CrossRef]
- Oulton, R.F.; Sorger, V.J.; Genov, D.A.; Pile, D.F.P.; Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon. 2008, 2, 496–500. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; He, S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 2009, 17, 16646–16653. [Google Scholar] [CrossRef]
- Lou, F.; Dai, D.; Wosinski, L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic dielectric coupler. Opt. Lett. 2012, 37, 3372–3374. [Google Scholar] [CrossRef]
- Chee, J.; Zhu, S.; Lo, G.Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Opt. Express 2012, 20, 25345–25355. [Google Scholar] [CrossRef]
- Guan, X.; Wu, H.; Shi, Y.; Wosinski, L.; Dai, D. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt. Lett. 2013, 38, 3005–3008. [Google Scholar] [CrossRef]
- Almeida, V.R.; Xu, Q.; Barrios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Tan, M.; Li, Z. Research progress of lithium niobate thin-film modulators. Chin. Opt. 2022, 15, 1–13. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Lonar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Wu, B.; Kumar, A.; Pamarthy, S. High aspect ratio silicon etch: A review. J. Appl. Phys. 2010, 108, 051101. [Google Scholar] [CrossRef]
Source | PER (dB) | IL (dB) | Length (μm) | BandWidth (nm) | Cut |
---|---|---|---|---|---|
[4] | ~21 (TE) | <1 (TE&TM) | >6000 | 150 (>20 dB, TE) | x-cut |
~45 (TM) | 250 (>40 dB, TM) | ||||
[5] | - | ~2.8 (TE) | 51000 | 140 (>20 dB, TE) | z-cut |
~1.3 (TM) | 140 (>18 dB, TM) | ||||
[6] | 47.7 (TE) | 0.9 (TE) | ~430 | over 200 (>17.8 dB, TE) | x-cut |
48 (TM) | 0.6 (TM) | over 200 (>22.8 dB, TM) | |||
[7] | ~24 (TE) | 0.3 (TE) | 160 | 185 (>20 dB, TE) | z-cut |
~31 (TM) | 1.0 (TM) | 85 (>20 dB, TM) | |||
[12] | 22.8 (TE) | 0.12 (TE) | 61.5 | 38 (>20 dB, TE&TM) | z-cut |
26.2 (TM) | 0.47 (TM) | ||||
[13] | 26.7 (TE) | <0.05 (TE&TM) | 16 | 140 (>10 dB, TE&TM) | z-cut |
21.3 (TM) | |||||
[14] | ~36(TE) | 1.10 (TE) | ~180 | 50 (>10 dB, TE) | z-cut |
~35(TM) | 1.24(TM) | 50 (>35 dB, TM) | |||
This work | 40.7 (TE) | <0.05 (TE&TM) | 46 | 100(>10 dB, TE) | x-cut |
50.7 (TM) | 100(>45 dB, TM) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Li, X.; Li, J.; Dai, S.; Zhao, Y.; Wei, C.; Liu, J. Compact, High Extinction Ratio, and Low-Loss Polarization Beam Splitter on Lithium-Niobate-On-Insulator Using a Silicon Nitride Nanowire Assisted Waveguide and a Grooved Waveguide. Photonics 2022, 9, 779. https://doi.org/10.3390/photonics9100779
Tao J, Li X, Li J, Dai S, Zhao Y, Wei C, Liu J. Compact, High Extinction Ratio, and Low-Loss Polarization Beam Splitter on Lithium-Niobate-On-Insulator Using a Silicon Nitride Nanowire Assisted Waveguide and a Grooved Waveguide. Photonics. 2022; 9(10):779. https://doi.org/10.3390/photonics9100779
Chicago/Turabian StyleTao, Jinming, Xintong Li, Jinye Li, Shuangxing Dai, Yiru Zhao, Chuangchuang Wei, and Jianguo Liu. 2022. "Compact, High Extinction Ratio, and Low-Loss Polarization Beam Splitter on Lithium-Niobate-On-Insulator Using a Silicon Nitride Nanowire Assisted Waveguide and a Grooved Waveguide" Photonics 9, no. 10: 779. https://doi.org/10.3390/photonics9100779
APA StyleTao, J., Li, X., Li, J., Dai, S., Zhao, Y., Wei, C., & Liu, J. (2022). Compact, High Extinction Ratio, and Low-Loss Polarization Beam Splitter on Lithium-Niobate-On-Insulator Using a Silicon Nitride Nanowire Assisted Waveguide and a Grooved Waveguide. Photonics, 9(10), 779. https://doi.org/10.3390/photonics9100779