Nonlinear Dynamics of Interband Cascade Laser Subjected to Optical Feedback
Abstract
:1. Introduction
2. Theoretical Model
3. Numerical Results
3.1. Route to Chaos
3.2. Hopf Bifurcation Analysis
3.3. Bandwidth of Chaos
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICL | interband cascade laser |
LEF | linewidth enhancement factor |
QCL | quantum cascade laser |
TS | time series |
ACF | autocorrelation curves functions |
PP | phase portrait |
RFS | radio-frequency spectrum |
OS | optical spectral |
S | stable |
P1 | period-1 |
QP | quasi-periodic |
MP | multiple-periodic |
C | chaos |
References
- Lin, C.-H.; Yang, R.Q.; Zhang, D.; Murry, S.; Pei, S.; Allerman, A.; Kurtz, S. Type-II interband quantum cascade laser at 3.8 μm. Electron. Lett. Abbrevi. 1997, 33, 598–599. [Google Scholar] [CrossRef]
- Yang, R.Q.; Bradshaw, J.L.; Bruno, J.D. Room temperature type-II interband cascade. Appl. Phys. Lett. 2002, 81, 397–399. [Google Scholar] [CrossRef]
- Yang, R.Q.; Hill, C.J.; Yang, B.H.; Wong, C.M.; Muller, R.E.; Echternach, P.M. Continuous-wave operation of distributed feedback interband cascade lasers. Appl. Phys. Lett. 2004, 84, 3699–3701. [Google Scholar] [CrossRef]
- Kim, M.; Canedy, C.L.; Bewley, W.W.; Kim, C.S.; Lindle, J.R.; Abell, J.; Vurgaftman, I.; Meyer, J.R. Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature. Appl. Phys. Lett. 2008, 92, 191110. [Google Scholar] [CrossRef]
- Bagheri, M.; Frez, C.; Sterczewski, L.; Gruidin, I.; Fradet, M.; Vurgaftman, I.; Canedy, C.L.; Bewley, W.W.; Merritt, C.D.; Kim, C.S.; et al. Passively mode-locked interband cascade optical frequency combs. Sci. Rep. 2018, 8, 3322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Yang, R.Q.; Gong, J.; He, J.-J. Mid-Infrared Widely Tunable Single-Mode Interband Cascade Lasers Based on V-Coupled Cavities. Opt. Lett. 2020, 45, 2700–2702. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C. Attenuation of Electromagnetic Radiation by Haze, Fog, Clouds, and Rain; Rand Corp.: Santa Monica, CA, USA, 1975; pp. 1–39. [Google Scholar]
- Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J.R.; Canedy, C.L.; Kim, C.S.; Kim, M.; Bewley, W.W.; Merritt, C.D.; Abell, J.; et al. Interband cascade lasers. J. Phys. D Appl. Phys. 2005, 48, 123001. [Google Scholar] [CrossRef]
- Horstjann, M.; Bakhirkin, Y.; Kosterev, A.; Curl, R.; Tittel, F.; Wong, C.; Hill, C.; Yang, R. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B 2004, 79, 799–803. [Google Scholar] [CrossRef]
- Wysocki, G.; Bakhirkin, Y.; So, S.; Tittel, F.K.; Hill, C.J.; Yang, R.Q.; Fraser, M.P. Dual interband cascade laser based trace-gas sensor for environmental monitoring. Appl. Opt. 2007, 46, 8202–8209. [Google Scholar] [CrossRef] [Green Version]
- Risby, T.H.; Tittel, F.K. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Opt. Eng. 2010, 49, 111123. [Google Scholar]
- Soibel, A.; Wright, M.W.; Farr, W.H.; Keo, S.A.; Hill, C.J.; Yang, R.Q.; Liu, H.C. Midinfrared Interband Cascade Laser for Free Space Optical Communication. IEEE Photonics Technol. Lett. 2010, 22, 121–123. [Google Scholar] [CrossRef]
- Yang, R.Q.; Li, L.; Jiang, Y.C. Interband cascade laser: From original concept to actual device. Prog. Phys. 2014, 34, 169–190. [Google Scholar]
- Deng, Y.; Zhao, B.B.; Wang, C. Linewidth broadening factor of an interband cascade laser. Appl. Phys. Lett. 2019, 115, 181101. [Google Scholar] [CrossRef]
- Green, R.P.; Xu, J.-H.; Mahler, L.; Tredicucci, A.; Beltram, F.; Giuliani, G.; Beere, H.E.; Ritchie, D. Linewidth enhancement factor of terahertz quantum cascade lasers. Appl. Phys. Lett. 2008, 92, 071106. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Fan, Z.F.; Wang, C. Optical feedback induced nonlinear dynamics in an interband cascade laser. Proc. SPIE 2021, 11680, 116800J. [Google Scholar]
- Spitz, O.; Herdt, A.; Wu, J.; Maisons, G.; Carras, M.; Wong, C.-W.; Elsäßer, W.; Grillot, F. Private communication with quantum cascade laser photonic chaos. Nat. Commun. 2021, 12, 3327. [Google Scholar] [CrossRef]
- Caffey, D.; Day, T.; Kim, C.S.; Kim, M.; Vurgaftman, I.; Bewley, W.W.; Lindle, J.R.; Canedy, C.L.; Abell, J.; Meyer, J.R. Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers. Opt. Express 2010, 18, 15691. [Google Scholar] [CrossRef]
- Wang, A.; Li, P.; Zhang, J.; Zhang, J.; Li, L.; Wang, Y. 4.5 Gbps high-speed real-time physical random bit generator. Opt. Express 2013, 21, 20452–20462. [Google Scholar] [CrossRef]
- Wang, A.; Yang, Y.; Wang, B.; Zhang, B.; Li, L.; Wang, Y. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference. Opt. Express 2013, 21, 8701–8710. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, D.; Gao, H.; Guo, Y.; Wang, Y.; Hong, Y.; Shore, K.A.; Wang, A. Real-time 2.5-Gb/s correlated random bit generation using synchronized chaos induced by a common laser with dispersive feedback. IEEE J. Quantum Electron. 2020, 56, 1–8. [Google Scholar] [CrossRef]
- Zhang, T.; Jia, Z.; Wang, A.; Hong, Y.; Wang, L.; Guo, Y.; Wang, Y. Experimental observation of dynamic-state switching in VCSELs with optical feedback. IEEE Photonics Technol. Lett. 2021, 33, 335–338. [Google Scholar] [CrossRef]
- Jumpertz, L.; Schires, K.; Carras, M.; Sciamanna, M.; Grillot, F. Chaotic light at mid-infrared wavelength. Light Sci. Appl. 2016, 5, e16088. [Google Scholar] [CrossRef] [Green Version]
- Spitz, O.; Wu, J.; Carras, M.; Wong, C.-W.; Grillot, F. Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures. Laser Phys. Lett. 2018, 15, 116201. [Google Scholar] [CrossRef] [Green Version]
- Jumpertz, L.; Carras, M.; Grillot, F. Regimes of external optical feedback in 5.6 µm distributed feedback mid-infrared quantum cascade lasers. Appl. Phys. Lett. 2014, 105, 131112. [Google Scholar] [CrossRef] [Green Version]
- Panajotov, K.; Sciamanna, M.; Arteaga, M.A.; Thienpont, H. Optical feedback in vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1700312. [Google Scholar] [CrossRef]
- Yang, R.Q. Mid-infrared interband cascade lasers based on type-II heterostructures. Microelectron. J. 1999, 30, 1043–1056. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, C. Rate Equation modeling of interband cascade lasers on modulation and noise dynamics. IEEE J. Quantum Electron. 2020, 56, 2300109. [Google Scholar] [CrossRef]
- Bewley, W.W.; Lindle, J.R.; Kim, C.S.; Kim, M.; Canedy, C.L.; Vurgaftman, I.; Meyer, J.R. Lifetimes and Auger coefficients in type-II W interband cascade lasers. Appl. Phys. Lett. 2008, 93, 041118. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Canedy, C.L.; Kim, C.S.; Kim, M.; Bewley, W.W.; Lindle, J.R.; Abell, J.; Meyer, J.R. Mid-infrared interband cascade lasers operating at ambient temperatures. New J. Phys. 2009, 11, 125015. [Google Scholar] [CrossRef] [Green Version]
- Vurgaftman, I.; Canedy, C.L.; Kim, C.S.; Kim, M.; Bewley, W.W.; Lindle, J.R.; Abell, J.; Meyer, J.R. Mid-IR type-II interband cascade lasers. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1435–1444. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time-series. Phys. D Nonlinear Phenomena. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A. Wolf Lyapunov Exponent Estimation from A Time Series. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/48084-wolf-lyapunov-exponent-estimation-from-a-time-series (accessed on 5 January 2021).
- Wang, D.; Wang, L.; Li, P.; Zhao, T.; Jia, Z.; Gao, Z.; Guo, Y.; Wang, Y.; Wang, A. Bias Current of Semiconductor Laser-An Unsafe Key for Secure Chaos Communication. Photonics 2019, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhou, P.; Li, N.Q. Broad tunable photonic microwave generation in an optically pumped spin-VCSEL with optical feedback stabilization. Opt. Lett. 2021, 46, 3147–3150. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Kong, L.; Wang, A. Multi-target real-time ranging with chaotic laser radar. Chin. Opt. Lett. 2008, 6, 868–870. [Google Scholar] [CrossRef]
- Li, P.; Guo, Y.; Guo, Y.; Fan, Y.; Guo, X.; Liu, X.; Shore, K.A.; Dubrova, E.; Xu, B.; Wang, Y.; et al. Self-balanced real-time photonic scheme for ultrafast random number generation. APL Photonics 2018, 3, 061301. [Google Scholar] [CrossRef]
- Wang, L.; Mao, X.; Wang, A.; Wang, Y.; Gao, Z.; Li, S.-S.; Yan, L. Scheme of coherent optical chaos communication. Opt. Lett. 2020, 45, 4762. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, J.M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback. Opt. Commun. 2003, 221, 173–180. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Cavity length | L | 2 mm |
Cavity width | W | 4.4 μm |
Group velocity of light | vg | 8.38 × 107 m/s |
Wavelength | λ | 3.7 μm |
Active area | A | 8.8 × 10−9 m2 |
Facet reflectivity | R | 0.32 |
Refractive index | nr | 3.58 |
Optical confinement factor | Γp | 0.04 |
Stage number | m | 3–20 |
Injection efficiency | H | 0.64 |
Photon lifetime | τp | 10.5 ps |
Spontaneous emission time | τsp | 15 ns |
Auger lifetime | τaug | 1.08 ns |
Threshold current | Ith | 19.8 mA (m = 5) |
Feedback strength | fext | 0~30% |
Time delay | τf | 1.5~5.0 ns |
Differential gain | a0 | 2.8 × 10−10 cm |
Transparent carrier number | Ntr | 6.2 × 107 |
Spontaneous emission factor | β | 1 × 10−4 |
Linewidth enhancement factor | αH | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Cheng, X.; Jia, Z.; Shore, K.A. Nonlinear Dynamics of Interband Cascade Laser Subjected to Optical Feedback. Photonics 2021, 8, 366. https://doi.org/10.3390/photonics8090366
Han H, Cheng X, Jia Z, Shore KA. Nonlinear Dynamics of Interband Cascade Laser Subjected to Optical Feedback. Photonics. 2021; 8(9):366. https://doi.org/10.3390/photonics8090366
Chicago/Turabian StyleHan, Hong, Xumin Cheng, Zhiwei Jia, and K. Alan Shore. 2021. "Nonlinear Dynamics of Interband Cascade Laser Subjected to Optical Feedback" Photonics 8, no. 9: 366. https://doi.org/10.3390/photonics8090366
APA StyleHan, H., Cheng, X., Jia, Z., & Shore, K. A. (2021). Nonlinear Dynamics of Interband Cascade Laser Subjected to Optical Feedback. Photonics, 8(9), 366. https://doi.org/10.3390/photonics8090366