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Abstract: In this study, we have proposed and numerically demonstrated that the bias current of
a semiconductor laser cannot be used as a key for optical chaos communication, using external-cavity
lasers. This is because the chaotic carrier has a signature of relaxation oscillation, whose period can
be extracted by the first side peak of the carrier’s autocorrelation function. Then, the bias current
can be approximately cracked, according to the well-known relationship between the bias current
and relaxation period of a solitary laser. Our simulated results have shown that the cracked current
eavesdropper could successfully crack an encrypted message, by means of a unidirectional locking
injection or a bidirectional coupling. In addition, the cracked bias current was closer to the real value
as the bias current increased, meaning that a large bias current brought a big risk to the security.
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1. Introduction

The secure optical chaos communication process has received considerable attention due to its
excellent features, such as hardware encryption, high transmission rate, long transmission distance,
and compatibility with the existing fiber networks. The first field experiment of optical chaos
communication was demonstrated in the commercial optical networks of Athens, which achieved
a rate of 1 Gb/s with a transmission distance over 120 km [1]. Considering the robustness and cost,
external-cavity semiconductor laser (ECL) is a promising chaotic transceiver, due to its simple structure,
which is capable of integration. Photonics integration of chaotic ECL has become a research focus and
some integrated chaotic semiconductor lasers have recently been reported [2–5].

Chaos-based communication can be realized only when the parameters of chaotic transceivers are
matched. A parameter match means that the parameter values of a chaotic transmitter and receiver
can ensure synchronization, and realize message encoding and decoding [6–8]. Thus, the parameters
of chaotic lasers are generally considered to be key in optical chaos communication [9]. Multi-user
communication is the trend of secure chaos communication. Current semiconductor integration
technology can manufacture massive lasers with matched internal parameters, which means that the
laser internal parameters are public. Therefore, for ECLs like chaotic transceivers, the controllable
external parameters, including bias current, external-cavity length, and feedback strength should be
selected as the keys, to ensure security. For example, Paul et al. proposed the external-cavity length
as a key [10]. However, this is unsafe because the laser chaotic oscillation contains external-cavity
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resonances, leading to signature of feedback time delay, which exposes the external cavity length [11,12].
Many efforts have been made to suppress or eliminate the time delay signature, to enhance security by
increasing the complexity of feedback cavity, such as double-mirror feedback [13], polarization-rotated
feedback [14], fiber Bragg grating (FBG) feedback [15], chirped fiber Bragg grating (CFBG) feedback [16],
random grating feedback [17], and feedback phase modulation [18]. Nevertheless, from the viewpoint
of integration, the external cavity length is fixed, which is then also unsuitable for acting as a key, once
the ECL is integrated. By comparison, the laser bias current is easy to adjust. However, for a solitary
laser, the bias current is related to the relaxation oscillation frequency (f RO). Therefore, the safety of
using a bias current as a key, is worthy of a detailed investigations.

In this study, we numerically analyzed the relaxation oscillation signature (ROS) in a chaotic laser,
as a function of the bias current, and then used it to crack the optical chaos communication, based on
external-cavity lasers. The risk of a bias current in chaos communication was also analyzed.

2. Theoretical Model

Figure 1 shows the schematic diagram of the optical chaos communication system, with a pair of
mutually-coupled, authorized external-cavity lasers (SL1 and SL2). Two kinds of eavesdroppers were
considered. Eavesdropper EveA was disguised as an authorized transceiver which was bidirectionally
coupled with the transmitter SL1 (in this way, EveA could not only eavesdrop the message but could also
send false information to SL1). Eavesdropper EveB simply tapped the transmitted signal from SL1 and
unidirectionally injected into the eavesdropping laser SLEB. Note that the ECLs of the communication
users and eavesdroppers had the same structure and the same semiconductor lasers. In addition,
we simulated the spectra of SL1 with and without considering SL2. It was found that the relaxation
oscillation frequency did not show any obvious change. For brevity, we omitted the equations of SL2

in this manuscript.
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Figure 1. Schematic diagram of two kinds of eavesdroppers: EveA acted a disguiser that was
bidirectionally coupled to the transmitter, and EveB tapped and unidirectionally injected the
transmitted light to its laser. SL—semiconductor laser; OC—optical coupler; OI—optical isolator;
EDFA—erbium-doped optical fiber amplifier; I—bias current. SL1 and SL2 are lasers of legal users.
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where E(t) is the complex amplitude of optical field and N(t) represents the corresponding carrier
density. The subscripts ‘1′, ‘A’, and ‘B’, represent the legal user, EveA, and EveB, respectively. I is the
bias current. k is the amplitude feedback strength. τ = 5 ns is the feedback delay time. Ith = 12 mA is
the laser threshold current. kA,B = 0.447 is the amplitude coupling strength. Note that, we set kA = 0 in
the EveB simulation. τc = 19 ns represents the coupling delay time. ∆ω = ω1 − ωA,B = 0 denote the
detuning angular frequency of the legal user’s laser and the eavesdropper’s laser. The other intrinsic
parameters are listed as follows—transparency carrier density N0 = 0.5 × 105 µm−3, differential gain g =

2.125 × 10−3 µm3ns−1, gain saturation parameter ε = 1 × 10−5 µm3, carrier lifetime τN = 2.2 ns, photon
lifetime τp = 1.6 ps, linewidth enhancement factor α = 6.0, round-trip time in laser cavity τin = 7.3 ps,
active layer volume V = 100 µm3, and the elementary charge q = 1.602 × 10−19 C. The fourth-order
Runge–Kutta method, with a step of 2.5 ps was used to solve these equations in the simulation.

The relaxation frequency of the solitary laser without external feedback could be calculated
according to the following formula [20]

fRO =
1

2π

(
(I/Ith − 1)
τNτp

(1 + gN0τp)

) 1
2

. (4)

For a bias current I = 1.6Ith, the used laser had a relaxation frequency of 2.35 GHz.

3. Results

3.1. Principles of the Cracking Process

When moderate optical feedback was applied, the laser generated chaotic oscillation. Figure 2a
plots the RF spectrum of laser intensity chaos, which was obtained with a fixed bias current I1 =

1.6Ith and an amplitude feedback strength k1 = 0.08. The spectrum obviously had a dominant peak
around the relaxation frequency. This meant that the chaotic carrier had a signature of laser relaxation
oscillation. More interestingly, the relaxation oscillation frequency or period could be clearly extracted
from the autocorrelation function (ACF) of the temporal waveform which was the inverse Fourier
transform of the power spectrum. As shown in Figure 2b, the ACF trace had a side peak closest to the
main peak. The location of this side peak was 0.367 ns, corresponding to a frequency of 2.72 GHz,
which was the relaxation frequency of the laser with feedback. Note that the slight increase of the
relaxation frequency was caused by the optical feedback [20]. Therefore, the signature of relaxation
oscillation was quantitatively characterized by the side peak of ACF—the location read the relaxation
oscillation period (τRO) and the height indicated the visibility of the ROS.
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Figure 2. (a) Power spectrum and (b) the autocorrelation function (ACF) trace of the external-cavity
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ECL output.
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Figure 3 plots the signature of relaxation oscillation, as a function of the bias current, which
was separately obtained at different feedback strengths k1 = 0.08 (circles), 0.1 (triangles), and 0.12
(squares). Figure 3a plots the location of the ACF side peak and also plots the solitary laser’s relaxation
period, in black line, which was calculated from Equation (4). Compared to the solitary laser, the
external feedback light reduced the relaxation period. The stronger was the amplitude feedback
strength, the greater was the decrease of τRO. However, the reduction was quite small. Figure 3b
depicts the height of relaxation oscillation as a function of the bias current. The greater the bias
current or lower the amplitude feedback strength, the more pronounced were the observed relaxation
oscillation characteristics. This indicated that one could easily identify the ROS from the ACF of laser
intensity chaos.
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calculated from the formula of the relaxation period.

According to the rule of the aforementioned relaxation oscillation characteristics, the cracking
process was implemented with the following formulas (Equations (4)–(6)). It consisted of three main
stages: (1) extracting the relaxation oscillation period τRO; (2) calculating the initial bias current IE0, and
(3) decreasing IE from IE0. First, τRO was obtained from the power spectrum or the autocorrelation curve
of the transmitter chaos carrier, by an eavesdropper; Figure 2. With this τRO, the initial bias current
of eavesdropper (IE0) could be calculated using Equation (4)—the formula for relaxation oscillation
in the solitary laser without external feedback. Based on the principle of relaxation oscillation in
Figure 3a, the bias current of the eavesdroppers was gradually reduced from IE0, until the chaos was
synchronized and then the hidden message was deciphered. The advantages of this method were as
follows: IE0 could be obtained immediately from the relaxation oscillation period, which narrowed
the range of the crack space. On the other hand, the optical feedback light reduced the relaxation
oscillation period in the chaotic laser, which indicated the crack direction. As a result, the eavesdropper
could crack the secret keys faster than the brute-force attack, using our proposed method.

s( f ) =
∣∣∣FT

{
P(t)

}∣∣∣2, (5)

fRO = find(s( f ) = maximum), (6)

where P(t) is the intensity time-series of chaotic laser and FT{} denotes Fourier transform.

3.2. Cracking Results

In the simulation, chaos masking was adopted to encrypt the message (binary pseudorandom
sequences), for its simple structure. The electrical message was applied on an electro-optical modulator,
to modulate a continuous-wave semiconductor laser, with a data rate of 2.5 Gb/s, of which the
wavelength and polarization was identical to the transmitter laser, and then the generated optical
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message was masked into the optical chaos carrier, through an optical coupler. The external modulation
index was 0.05. Furthermore, the decoded messages were obtained by a fourth-order low-pass
Butterworth filter. We estimated the bit error rate (BER) of the deciphered data, by calculating the Q
factor of the eye diagram. The BER threshold of 1.8 × 10−3 was used to evaluate the quality of the
chaotic communication [21]. That is, the message could be decoded when BER was lower than the BER
threshold. Here, we set the bias current of the transmitter as I1 = 1.6Ith. The eavesdropper extracted the
τRO of 0.367 ns from the chaos carrier, and the IE0 was considered to be 1.8Ith, according to Equation (4).

Figure 4 gives the eavesdropping results, including the chaotic temporal waveforms and the
corresponding eye diagrams of the outputs of SL1 and Eve, with different bias current IE = 1.8Ith and
1.616Ith. For the eavesdropper EveA, when the IEA declined to 1.616Ith, the chaos synchronization was
established because of the matched bias current between the SL1 and SLEA. As a result, the opened eye
diagram and the BER of 3.12 × 10−5 meant that EveA had already decoded the message under this
scenario, shown in Figure 4(a1,a2). It is worth nothing that the cracking could be achieved by only
reducing the bias current of 2.2 mA, with several attempts by EveA.

For the eavesdropper EveB, as shown in Figure 4b, the message was decoded with a BER of
1.875 × 10−5 and the system was cracked by utilizing the bias current of IEB = 1.8Ith. The reason
was that EveB achieved a high-quality chaos synchronization with SL1, through a unidirectional
injection. Compared with EveA, EveB directly cracked the system, with a bias current of 1.8Ith. The
results also proved that the security of bidirectionally-coupled synchronization was higher than the
unidirectionally-coupled synchronization, in the optical chaos communication [22].
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Figure 4. Examples of eavesdropping with an initial cracked bias current of 1.8Ith. (a1) Temporal
waveform of synchronized chaos (red and light blue) and (a2) the decoded signal (blue) of EveA

with IEA = 1.616Ith; (b1) temporal waveform of synchronized chaos (red and light blue) and (b2) the
decoded message (blue) of EveB with IEB = 1.8Ith. The red line is the transmitted chaos carrier with the
encoded message.

To better qualify the bias current crack range of this communication system, a more careful analysis
has been carried out in Figure 5. Figure 5a shows the BER as a function of the bias current mismatches
(∆I = IE − I1). BER threshold is marked with red dash line. It is obvious that cracked ∆I values ranged
from −0.25 to 0.25. Additionally, as the IE decreased, the BER gradually decreased to a minimum, and
then rose to an unchanged value. The point where BER reached a minimum meant that the IEA was
the closest value to I1. Thus, EveA broke this communication system without knowing the bias current
and the cracked area resembled the shape of the letter ‘V’, with the bias current mismatches.
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