# Optical Frequency Combs Generated in Silica Microspheres in the Telecommunication C-, U-, and E-Bands

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Fabrication of Microspheres

^{7}on average. Within a couple of days, the Q-factors dropped on the average to a value of 4 × 10

^{7}, and then this value remained unchanged for a long time. Two months after the preparation of the samples, the Q-factors were about 2 × 10

^{7}. Note that the record large value is Q = 8 × 10

^{9}measured at 633 nm ~1 min after fabrication for a silica 750-μm microsphere [33]. However, typical Q-factors for silica microspheres at 1.55 μm used for OFC generation or Raman lasing are 10

^{7}–10

^{8}[28,29,34,35], which agrees with our results. The reasons limiting Q-factors are discussed in [33].

#### 2.2. Numerical

#### 2.2.1. Calculation of Dispersion and Nonlinear Coefficient

_{l}

_{+1/2}and H

_{l}

_{+1/2}

^{(1)}are the Bessel function and the Hankel function of the 1st kind of order l + 1/2, respectively; l is the azimuthal index; k

_{0}= 2∙π∙ν/c is the light propagation constant in vacuum; ν is the frequency; k = n(ν)·k

_{0}; n(ν) is the linear refractive index of the silica glass (calculated using the Sellmeier formula given in [39]). We selected the first roots of Equation (1) for the fundamental mode family. The roots were localized using a well-known approximation formula for the eigenfrequencies presented, for example, in [38]. These approximate eigenfrequencies were used as the initial values for finding the roots of Equation (1). The iterative algorithm was implemented with the dispersion of the silica glass taken into account [39]. After finding eigenfrequencies for the fundamental TE mode family, we calculated the 2nd-order dispersion [40]:

_{eff}and nonlinear Kerr coefficient γ were calculated

_{2}= 2.2·10

^{−20}m

^{2}/W is the nonlinear refractive index of the silica glass [39]. We found γ = 6.2 (W∙km)

^{−1}for ν ≈ 193 THz and neglected its frequency dependence in the simulations below.

#### 2.2.2. Calculation of Intracavity CW Power

_{R}is the round trip time; t and τ are slow and fast times, respectively; α is the loss coefficient including intrinsic and coupling losses; β

_{k}is the dispersion of the k-th order; θ is the coupling coefficient; and δ

_{0}is the frequency detuning of the pump field Ε

_{in}from the exact resonance.

_{in}|

^{2}(π∙d∙γ∙θ/α

^{3}); Y = |E|

^{2}(π∙d∙γ/α); and Δ = δ

_{0}/α). We found Y(Δ) from Equation (7), and in the case when this equation had three roots, we took the maximum value corresponding to the upper stable branch.

#### 2.2.3. Calculation of Gain Coefficients for the Degenerate FWM Processes under the Strong Intracavity CW Field Approximation

_{0}found from Equation (7) and two small-amplitude sidebands (|a

_{±}| << |E

_{0}|) symmetrically shifted by ±Ω from the pump frequency

_{0}+ πd∙D

_{e}(Ω) + 2πdγ|E

_{0}|

^{2}, D

_{o}(Ω), and D

_{e}(Ω) are odd and even dispersion, respectively

_{0}|

^{2}is the intracavity power.

_{±}) is observed if Re(λ

_{±}(Ω) > 0). For this case, the gain coefficient is Re(λ

_{±}(Ω)).

#### 2.2.4. Numerical Simulation Based on Lugiato–Lefever Equation with the Raman Nonlinearity Taken into Account

_{R}= 0.18 is the fraction of Raman contribution to the total nonlinear response; T

_{1}= 12.2 fs, and T

_{2}= 32 fs.

## 3. Results

#### 3.1. The 1st Experimental Series

_{in}|

^{2}= 50 mW, assumed α = θ/2, and set the finesse π/α = 5 × 10

^{4}. Since detuning was not known for sure, we considered various values presented in Figure 1d. We found that the experimental sidebands shown in Figure 1c correspond to the gain bands for reasonable values of detuning. In addition, the Raman scattering may also affect the low-frequency OFC, but here we did not consider it for qualitative understanding of the FWM process.

#### 3.2. Theoretical Study of FWM

_{p}= 10 mW and P

_{p}= 50 mW. We used the approach described in Section 2.2.2 for finding intracavity CW powers and the approach described in Section 2.2.3 for finding gain coefficients for a FWM process.

_{p}= 50 mW than for P

_{p}= 10 mW due to a higher intracavity power (see Figure 1a). We also analyzed large values of detuning Δ = 40, 60, 80 for P

_{p}= 50 mW (see also the corresponding marked points in Figure 2b). The calculated gain coefficients are given in Figure 2e (here, individual colormap scales are used for each value of detuning). The broadest gain-bands are obtained for the pump frequencies close to the zero dispersion frequency. Their spectral widths exceed 20 THz. The larger the detuning, the higher the gain coefficient.

#### 3.3. The 2nd Experimental Series

#### 3.4. The 3rd Experimental Series and Its Interpretation

_{p}= 197.7 THz and attained only two OFCs: the first one was near the pump frequency, and the second was the Raman-assisted OFC (Figure 4b). In this case, the pump frequency was in the normal dispersion range, while the soliton-like Raman-assisted OFC was in the anomalous dispersion range.

^{9}modes. The numerically modeled stable spectrum and spectral phase of the Raman-assisted OFC are plotted in Figure 4c. Here, we set Δ = 6 and X = 25 to attain a sufficiently good agreement between the experimental and the simulated spectra (compare Figure 4b,c). The measured spectral intensity at the pump frequency f

_{p}is higher than the calculated spectral intensity at f

_{p}because in the experiment the transmitted unconverted pump is also measured. The slight difference in the shape of the experimental and measured spectra is explained by the fact that we did not exactly know several experimental parameters (for example, detuning and coupling coefficient). The simulated intensity distribution in the time domain is shown in Figure 4d. Next, we filtered out the Raman-assisted OFC in the spectral domain (using the super-Gaussian filter for the complex spectral envelope: exp(-(f

_{p}+ Δf

_{R})

^{6}/δf

^{6}), Δf

_{R}= 15 THz, δf = 7 THz) and found its field distribution in the time domain. The temporal intensity and phase of the Raman soliton are plotted in Figure 4e. We indeed obtained the sech

^{2}-shape soliton demonstrated in Figure 4e. This soliton has almost flat spectral and temporal phases. Its duration is 180 fs (full width at half maximum, FWHM) and TBP = 0.315 (time-bandwidth product, TBP). Note that for the sech

^{2}-shape Fourier transform limited pulses, TBP is also 0.315.

## 4. Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Pasquazi, A.; Peccianti, M.; Razzari, L.; Moss, D.J.; Coen, S.; Erkintalo, M.; Chembo, Y.K.; Hansson, T.; Wabnitz, S.; Del’Haye, P.; et al. Micro-combs: A novel generation of optical sources. Phys. Rep.
**2018**, 729, 1–81. [Google Scholar] [CrossRef] - Strekalov, D.V.; Marquardt, C.; Matsko, A.B.; Schwefel, H.G.L.; Leuchs, G. Nonlinear and quantum optics with whispering gallery resonators. J. Opt.
**2016**, 18, 123002. [Google Scholar] [CrossRef][Green Version] - Reynolds, T.; Riesen, N.; Meldrum, A.; Fan, X.; Hall, J.M.; Monro, T.M.; François, A. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev.
**2017**, 11, 1600265. [Google Scholar] [CrossRef] - Brice, I.; Grundsteins, K.; Atvars, A.; Alnis, J.; Viter, R.; Ramanavicius, A. Whispering gallery mode resonator and glucose oxidase based glucose biosensor. Sens. Actuators B Chem.
**2020**, 318, 128004. [Google Scholar] [CrossRef] - Zhivotkov, D.; Ristić, D.; Romanova, E.; Ivanda, M. Refractometric gas sensing using a whispering gallery mode microresonator coated with a supra-micron sol-gel layer. Opt. Mater.
**2021**, 118, 111286. [Google Scholar] [CrossRef] - Soria, S.; Berneschi, S.; Brenci, M.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Righini, G.C. Optical Microspherical Resonators for Biomedical Sensing. Sensors
**2011**, 11, 785–805. [Google Scholar] [CrossRef] [PubMed] - Toropov, N.; Cabello, G.; Serrano, M.P.; Gutha, R.R.; Rafti, M.; Vollmer, F. Review of biosensing with whispering-gallery mode lasers. Light Sci. Appl.
**2021**, 10, 42. [Google Scholar] [CrossRef] - Peccianti, M.; Pasquazi, A.; Park, Y.; Little, B.E.; Chu, S.T.; Moss, D.J.; Morandotti, R. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun.
**2012**, 3, 765. [Google Scholar] [CrossRef][Green Version] - Xu, Q.; Soref, R. Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Express
**2011**, 19, 5244–5259. [Google Scholar] [CrossRef] - Han, Z.; Fast, S.S.; Klotz, E.; Vatnik, I.D.; Churkin, D.V. Optical filtering with axial whispering gallery modes on the surface of tapered optical fibers. Laser Phys. Lett.
**2020**, 17, 066201. [Google Scholar] [CrossRef] - Liang, W.; Ilchenko, V.S.; Savchenkov, A.A.; Matsko, A.B.; Seidel, D.; Maleki, L. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett.
**2010**, 35, 2822–2824. [Google Scholar] [CrossRef][Green Version] - Kondratiev, N.M.; Lobanov, V.E.; Cherenkov, A.V.; Voloshin, A.S.; Pavlov, N.G.; Koptyaev, S.; Gorodetsky, M.L. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express
**2017**, 25, 28167–28178. [Google Scholar] [CrossRef] - Cutrona, A.; Hanzard, P.-H.; Rowley, M.; Totero-Gongora, J.S.; Peccianti, M.; Malomed, B.A.; Oppo, G.-L.; Pasquazi, A. Temporal cavity solitons in a laser-based microcomb: A path to a self-starting pulsed laser without saturable absorption. Opt. Express
**2021**, 29, 6629–6646. [Google Scholar] [CrossRef] - Del’Haye, P.; Schliesser, A.; Arcizet, O.; Wilken, T.; Holzwarth, R.; Kippenberg, T.J. Optical frequency comb generation from a monolithic microresonator. Nature
**2007**, 450, 1214–1217. [Google Scholar] [CrossRef][Green Version] - Pfeifle, J.; Brasch, V.; Lauermann, M.; Yu, Y.; Wegner, D.; Herr, T.; Hartinger, K.; Schindler, P.; Li, J.; Hillerkuss, D.; et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photon.
**2014**, 8, 375–380. [Google Scholar] [CrossRef][Green Version] - Fülöp, A.; Mazur, M.; Lorences-Riesgo, A.; Helgason, Ó.B.; Wang, P.-H.; Xuan, Y.; Leaird, D.E.; Qi, M.; Andrekson, P.A.; Weiner, A.M.; et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun.
**2018**, 9, 1598. [Google Scholar] [CrossRef] [PubMed][Green Version] - Yu, M.; Okawachi, Y.; Griffith, A.G.; Picqué, N.; Lipson, M.; Gaeta, A.L. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun.
**2018**, 9, 1869. [Google Scholar] [CrossRef] [PubMed][Green Version] - Newman, Z.L.; Maurice, V.; Drake, T.; Stone, J.R.; Briles, T.C.; Spencer, D.T.; Fredrick, C.; Li, Q.; Westly, D.; Ilic, B.R.; et al. Architecture for the photonic integration of an optical atomic clock. Optica
**2019**, 6, 680–685. [Google Scholar] [CrossRef][Green Version] - Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M.H.P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science
**2018**, 359, 887–891. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gaeta, A.L.; Lipson, M.; Kippenberg, T.J. Photonic-chip-based frequency combs. Nat. Photonics
**2019**, 13, 158–169. [Google Scholar] [CrossRef] - Crespo-Ballesteros, M.; Yang, Y.; Toropov, N.; Sumetsky, M. Four-port SNAP microresonator device. Opt. Lett.
**2019**, 44, 3498–3501. [Google Scholar] [CrossRef] [PubMed] - Wang, M.; Yang, Y.; Lu, Z.; Wang, W.; Zhang, W.; Xie, C.; Zhong, H.; Wu, L.; Wu, T.; Tan, Q.; et al. Experimental demonstration of nonlinear scattering processes in a microbottle resonator based on a robust packaged platform. J. Lightwave Technol.
**2021**. [Google Scholar] [CrossRef] - Anashkina, E.A.; Marisova, M.P.; Andrianov, A.V.; Akhmedzhanov, R.A.; Murnieks, R.; Tokman, M.D.; Skladova, L.; Oladyshkin, I.V.; Salgals, T.; Lyashuk, I.; et al. Microsphere-based optical frequency comb generator for 200 GHz spaced WDM data transmission system. Photonics
**2020**, 7, 72. [Google Scholar] [CrossRef] - Spolitis, S.; Murnieks, R.; Skladova, L.; Salgals, T.; Andrianov, A.V.; Marisova, M.P.; Leuchs, G.; Anashkina, E.A.; Bobrovs, V. IM/DD WDM-PON communication system based on optical frequency comb generated in silica whispering gallery mode resonator. IEEE Access
**2021**, 9, 66335–66345. [Google Scholar] [CrossRef] - Salgals, T.; Alnis, J.; Murnieks, R.; Brice, I.; Porins, J.; Andrianov, A.V.; Anashkina, E.A.; Spolitis, S.; Bobrovs, V. Demonstration of a fiber optical communication system employing a silica microsphere-based OFC source. Opt. Express
**2021**, 29, 10903–10913. [Google Scholar] [CrossRef] - Hu, H.; Oxenløwe, L.K. Chip-based optical frequency combs for high-capacity optical communications. Nanophotonics
**2021**, 10, 1367–1385. [Google Scholar] [CrossRef] - Spolitis, S.; Kurbatska, I.; Bobrovs, V. Comparison of C-band and L-band WDM-PON systems performance with PAM-4 modulation format. In Proceedings of the 2017 International Workshop on Fiber Optics in Access Network (FOAN), Munich, Germany, 6–8 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Spillane, S.M.; Kippenberg, T.J.; Vahala, K.J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature
**2002**, 415, 621–623. [Google Scholar] [CrossRef] - Zhu, S.; Shi, L.; Ren, L.; Zhao, Y.; Jiang, B.; Xiao, B.; Zhang, X. Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators. Nanophotonics
**2019**, 8, 2321–2329. [Google Scholar] [CrossRef][Green Version] - Suzuki, R.; Kubota, A.; Hori, A.; Fujii, S.; Tanabe, T. Broadband gain induced Raman comb formation in a silica microresonator. J. Opt. Soc. Am. B
**2018**, 35, 933–938. [Google Scholar] [CrossRef][Green Version] - Andrianov, A.V.; Anashkina, E.A. Raman-assisted optical frequency combs generated in a silica microsphere in two whispering gallery mode families. Laser Phys. Lett.
**2021**, 18, 025403. [Google Scholar] [CrossRef] - Yang, Q.-F.; Yi, X.; Yang, K.Y.; Vahala, K. Stokes solitons in optical microcavities. Nat. Phys.
**2017**, 13, 53–57. [Google Scholar] [CrossRef][Green Version] - Gorodetsky, M.L.; Savchenkov, A.A.; Ilchenko, V.S. Ultimate Q of optical microsphere resonators. Opt. Lett.
**1996**, 21, 453–455. [Google Scholar] [CrossRef] - Webb, K.E.; Erkintalo, M.; Coen, S.; Murdoch, S.G. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett.
**2016**, 41, 4613–4616. [Google Scholar] [CrossRef][Green Version] - Sayson, N.L.B.; Webb, K.E.; Coen, S.; Erkintalo, M.; Murdoch, S.G. Widely tunable optical parametric oscillation in a Kerr microresonator. Opt. Lett.
**2017**, 42, 5190–5193. [Google Scholar] [CrossRef][Green Version] - ITU-T Recommendation G.694.1, Spectral Grids for WDM Applications: DWDM Frequency Grid; Telecommunication Standardization Sector of ITU; International Telecommunication Union: Geneva, Switzerland, 2012; pp. 1–7.
- Andrianov, A.V.; Anashkina, E.A. Single-mode silica microsphere Raman laser tunable in the U-band and beyond. Results Phys.
**2020**, 17, 103084. [Google Scholar] [CrossRef] - Oraevsky, A.N. Whispering-gallery waves. Quantum Electron.
**2002**, 32, 377–400. [Google Scholar] [CrossRef] - Agrawal, G.P. Nonlinear Fiber Optics, 6th ed.; Elsevier: London, UK, 2019. [Google Scholar]
- Fujii, S.; Tanabe, T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics
**2020**, 9, 1087–1104. [Google Scholar] [CrossRef][Green Version] - Coen, S.; Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett.
**2013**, 38, 1790–1792. [Google Scholar] [CrossRef] [PubMed][Green Version] - Sayson, N.L.B.; Pham, H.; Webb, K.E.; Ng, V.; Trainor, L.S.; Schwefel, H.G.L.; Coen, S.; Erkintalo, M.; Murdoch, S.G. Origins of clustered frequency combs in Kerr microresonators. Opt. Lett.
**2018**, 43, 4180–4183. [Google Scholar] [CrossRef] [PubMed] - Puzyrev, D.N.; Skryabin, D.V. Finesse and four-wave mixing in microresonators. Phys. Rev. A
**2021**, 103, 013508. [Google Scholar] [CrossRef] - Godey, C.; Balakireva, I.V.; Coillet, A.; Chembo, Y.K. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A
**2014**, 89, 063814. [Google Scholar] [CrossRef][Green Version] - Guo, H.; Karpov, M.; Lucas, E.; Kordts, A.; Pfeiffer, M.H.P.; Brasch, V.; Lihachev, G.; Lobanov, V.E.; Gorodetsky, M.L.; Kippenberg, T.J. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys.
**2017**, 13, 94–102. [Google Scholar] [CrossRef] - Anashkina, E.A.; Bobrovs, V.; Salgals, T.; Brice, I.; Alnis, J.; Andrianov, A.V. Kerr optical frequency combs with multi-FSR mode spacing in silica microspheres. IEEE Photonics Technol. Lett.
**2021**, 33, 453–456. [Google Scholar] [CrossRef] - Jung, H.; Gong, Z.; Liu, X.; Guo, X.; Zou, C.; Tang, H.X. Stokes and anti-Stokes Raman scatterings from frequency comb lines in poly-crystalline aluminum nitride microring resonators. Opt. Express
**2019**, 27, 22246–22253. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**(

**a**) Simplified experimental scheme for the 1st series. (

**b**) Numerically calculated dispersion for a silica microsphere with a diameter of 165 μm. (

**c**) Experimental spectrum demonstrating three OFCs: near the pump and in two frequency-separated sidebands. (

**d**) Numerically calculated gain coefficient under the strong pump approximation for a pump power of 50 mW. The dashed vertical line through (

**b**–

**d**) indicates zero dispersion.

**Figure 2.**(

**a**,

**b**) Intracavity CW power versus normalized detuning calculated for pump powers of 10 and 50 mW ((

**a**) is on a magnified scale). Numerically calculated gain coefficients under the strong pump approximation as functions of pump frequency and sideband frequency for pump powers P

_{p}= 10 mW (

**c**) and P

_{p}= 50 mW (

**d**,

**e**). For (

**c**,

**d**) the same colormap scale is used. For (

**e**) colormap scales are individual for each subplot.

**Figure 3.**(

**a**) Simplified experimental scheme for the second series. (

**b**–

**d**) The experimental spectra demonstrating frequency-tunable Raman-assisted soliton-like OFCs in the U-band as well as OFCs near the pump frequency in the C-band (and partially in the L-band in (

**b**)) and OFCs due to four-wave mixing in the E-band (and partially in the S-band in (

**b**)). The plateau in (

**b**–

**d**) between ~192 and 195 THz is due to using a bandpass filter before the tapered fiber.

**Figure 4.**(

**a**) A simplified experimental scheme for the 3rd series. (

**b**) The experimental spectrum demonstrating Raman-assisted soliton-like OFC and (

**c**) the corresponding numerically simulated spectrum (vertical light blue lines, left axis), the spectral envelope of the Raman-assisted soliton (solid line, left axis), and the spectral phase of the Raman-assisted soliton (dash-dotted line, right axis). (

**d**) Numerically simulated intensity distribution in the time domain. (

**e**) Numerically simulated intensity distribution of the filtered out Raman-assisted soliton-like OFC in the time domain (solid line, left axis) and its phase (dash-dotted line, right axis). Broadband low intensity background in (

**b**) is due to spontaneous emission from the pump laser.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Anashkina, E.A.; Marisova, M.P.; Salgals, T.; Alnis, J.; Lyashuk, I.; Leuchs, G.; Spolitis, S.; Bobrovs, V.; Andrianov, A.V.
Optical Frequency Combs Generated in Silica Microspheres in the Telecommunication C-, U-, and E-Bands. *Photonics* **2021**, *8*, 345.
https://doi.org/10.3390/photonics8090345

**AMA Style**

Anashkina EA, Marisova MP, Salgals T, Alnis J, Lyashuk I, Leuchs G, Spolitis S, Bobrovs V, Andrianov AV.
Optical Frequency Combs Generated in Silica Microspheres in the Telecommunication C-, U-, and E-Bands. *Photonics*. 2021; 8(9):345.
https://doi.org/10.3390/photonics8090345

**Chicago/Turabian Style**

Anashkina, Elena A., Maria P. Marisova, Toms Salgals, Janis Alnis, Ilya Lyashuk, Gerd Leuchs, Sandis Spolitis, Vjaceslavs Bobrovs, and Alexey V. Andrianov.
2021. "Optical Frequency Combs Generated in Silica Microspheres in the Telecommunication C-, U-, and E-Bands" *Photonics* 8, no. 9: 345.
https://doi.org/10.3390/photonics8090345