Induced Birefringence by Drop Cast in EFBG Ammonia Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PDI n-Decyl
2.3. FBG Fabrication and Characterizations
3. Experimental Results and Discussions
4. Theoretical Results and Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef] [PubMed]
- Timmer, B.; Olthuis, W.; van den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Van Damme, M.; Clarisse, L.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C.; Coheur, P.F. Industrial and agricultural ammonia point sources exposed. Nature 2018, 564, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Krupa, S. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef]
- Andre, R.S.; Mercante, L.A.; Facure, M.H.; Mattoso, L.H.; Correa, D.S. Enhanced and selective ammonia detection using In2O3/reduced graphene oxide hybrid nanofibers. Appl. Surf. Sci. 2019, 473, 133–140. [Google Scholar] [CrossRef]
- Ahmadi Tabr, F.; Salehiravesh, F.; Adelnia, H.; Gavgani, J.N.; Mahyari, M. High sensitivity ammonia detection using metal nanoparticles decorated on graphene macroporous frameworks/polyaniline hybrid. Talanta 2019, 197, 457–464. [Google Scholar] [CrossRef]
- Vinoth, E.; Gopalakrishnan, N. Fabrication of interdigitated electrode (IDE) based ZnO sensors for room temperature ammonia detection. J. Alloys Compd. 2020, 824, 153900. [Google Scholar] [CrossRef]
- Bittencourt, J.C.; de Santana Gois, B.H.; Rodrigues de Oliveira, V.J.; da Silva Agostini, D.L.; de Almeida Olivati, C. Gas sensor for ammonia detection based on poly(vinyl alcohol) and polyaniline electrospun. J. Appl. Polym. Sci. 2019, 136, 47288. [Google Scholar] [CrossRef]
- Eising, M.; Cava, C.E.; Salvatierra, R.V.; Zarbin, A.J.G.; Roman, L.S. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B Chem. 2017, 245, 25–33. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Huang, Y.; Zhai, H.; Liu, Z. Ammonia sensing properties of perylene diimides: Effects of core-substituted chiral groups. Sens. Actuators B Chem. 2018, 254, 805–810. [Google Scholar] [CrossRef]
- Kalita, A.; Hussain, S.; Malik, A.H.; Subbarao, N.V.V.; Iyer, P.K. Vapor phase sensing of ammonia at the sub-ppm level using a perylene diimide thin film device. J. Mater. Chem. C 2015, 3, 10767–10774. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, J.; Ding, J.; Wang, Q.; Li, H.; Shao, M.; Liu, Y.; Liu, Q.; Zhang, M.; Zhu, Y.; et al. Ultra sensitive NH3 gas detection using microfiber Bragg Grating. Opt. Commun. 2018, 427, 331–334. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Rashid, S.A.; Abu Bakar, M.H.; Ahmad Anas, S.B.; Mahdi, M.A.; Yaacob, M.H. Fabrication and Characterizations of a Novel Etched-tapered Single Mode Optical Fiber Ammonia Sensors Integrating PANI/GNF Nanocomposite. Sens. Actuators B Chem. 2019, 287, 71–77. [Google Scholar] [CrossRef]
- Mohammed, H.; Yaacob, M. A novel modified fiber Bragg grating (FBG) based ammonia sensor coated with polyaniline/graphite nanofibers nanocomposites. Opt. Fiber Technol. 2020, 58, 102282. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Marques, C. Low-cost Fiberoptic Probe for Ammonia Early Detection in Fish Farms. Remote Sens. 2020, 12, 1439. [Google Scholar] [CrossRef]
- Thangaraj, S.; Paramasivan, C.; Balusamy, R.; Arumainathan, S.; Thanigainathan, P. Evanescent wave optical fibre ammonia sensor with methylamine hydroiodide. IET Optoelectron. 2020, 14, 292–295. [Google Scholar] [CrossRef]
- Fan, X.; Deng, S.; Wei, Z.; Wang, F.; Tan, C.; Meng, H. Ammonia Gas Sensor Based on Graphene Oxide-Coated Mach-Zehnder Interferometer with Hybrid Fiber Structure. Sensors 2021, 21, 3886. [Google Scholar] [CrossRef]
- Pawar, D.; Kale, S.N. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Microchim. Acta 2019, 186, 253. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.; Barreto, R.C.; Macedo, A.G.; Cardozo Da Silva, J.C.; Kamikawachi, R.C. A Simple Equation to Describe Cross-Sensitivity Between Temperature and Refractive Index in Fiber Bragg Gratings Refractometers. IEEE Sens. J. 2018, 18, 1104–1110. [Google Scholar] [CrossRef]
- Abe, I.; de Góes, R.E.; Fabris, J.L.; Kalinowski, H.J.; Müller, M.; Fugihara, M.C.; Falate, R.; Diesel, B.W.; Kamikawachi, R.C.; Barbosa, C.L. Production and characterization of refractive index gratings in high-birefringence fibre optics. Opt. Lasers Eng. 2003, 39, 537–548. [Google Scholar] [CrossRef]
- Chehura, E.; Ye, C.C.; Staines, S.E.; James, S.W.; Tatam, R.P. Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load. Smart Mater. Struct. 2004, 13, 888–895. [Google Scholar] [CrossRef]
- Leandro, D.; Lopez-Amo, M. All-PM Fiber Loop Mirror Interferometer Analysis and Simultaneous Measurement of Temperature and Mechanical Vibration. J. Light. Technol. 2018, 36, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
- Türkmen, G.; Erten-Ela, S.; Icli, S. Highly soluble perylene dyes: Synthesis, photophysical and electrochemical characterizations. Dye. Pigment. 2009, 83, 297–303. [Google Scholar] [CrossRef]
- Singh, T.; Erten, S.; Günes, S.; Zafer, C.; Turkmen, G.; Kuban, B.; Teoman, Y.; Sariciftci, N.; Icli, S. Soluble derivatives of perylene and naphthalene diimide for n-channel organic field-effect transistors. Org. Electron. 2006, 7, 480–489. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Zhang, Z.; Yue, J.; Zakaria, Q.M.D.; Chen, C.; Jiang, X.; Yu, A. Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: Experimental and theoretical studies. Phys. Chem. Chem. Phys. 2014, 16, 11471–11480. [Google Scholar] [CrossRef] [PubMed]
- Kuhne, J.F.; Rocha, A.M.; Barreto, R.C.; Kamikawachi, R.C. Estimation models for the Refractive Index response curve of EFBGs. IEEE Sens. J. 2020, 20, 13394–13402. [Google Scholar] [CrossRef]
- Kaliyaraj Selva Kumar, A.; Zhang, Y.; Li, D.; Compton, R.G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Che, Y.; Datar, A.; Yang, X.; Naddo, T.; Zhao, J.; Zang, L. Enhancing One-Dimensional Charge Transport through Intermolecular π-Electron Delocalization: Conductivity Improvement for Organic Nanobelts. J. Am. Chem. Soc. 2007, 129, 6354–6355. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Che, Y.; Moore, J.S. One-Dimensional Self-Assembly of Planar π-Conjugated Molecules: Adaptable Building Blocks for Organic Nanodevices. Acc. Chem. Res. 2008, 41, 1596–1608. [Google Scholar] [CrossRef]
- Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C.F. Self-Assembled Sugar-Substituted Perylene Diimide Nanostructures with Homochirality and High Gas Sensitivity. Adv. Funct. Mater. 2012, 22, 4149–4158. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Wei, Z. Modulating supramolecular helicity and electrical conductivity of perylene dyes through an achiral alkyl chain. Chem. Commun. 2014, 50, 8343–8345. [Google Scholar] [CrossRef] [PubMed]
- Corotti, R.D.P.; Cunha, B.B.; Barreto, R.C.; Conceição, A.L.C.; Kamikawachi, R.C. Diphenylalanine Nanotube Coated Fiber Bragg Grating for Methanol Vapor Detection. IEEE Sens. J. 2020, 20, 1290–1296. [Google Scholar] [CrossRef]
NH3 (ppm) | Wavelength Shift (pm) | Response Time (min) | Recovery Time (min) |
---|---|---|---|
Parallel Mode | |||
27 | 14.0 ± 5.8 | 6.8 ± 0.6 | 0.9 ± 0.1 |
54 | 16.6 ± 5.5 | 4.7 ± 0.4 | 3.3 ± 0.3 |
109 | 20.2 ± 5.9 | 2.4 ± 0.3 | 3.9 ± 0.2 |
217 | 26.3 ± 5.8 | 8.6 ± 0.4 | 3.8 ± 0.3 |
435 | 26.7 ± 5.9 | 5.2 ± 0.2 | 6.0 ± 0.3 |
869 | 29.4 ± 5.5 | 5.1 ± 0.2 | 5.0 ± 0.3 |
1740 | 33.6 ± 5.6 | 2.8 ± 0.1 | 3.5 ± 0.2 |
3480 | 40.7 ± 5.9 | 5.5 ± 0.2 | 3.4 ± 0.1 |
6960 | 43.9 ± 6.0 | 2.4 ± 0.1 | 4.1 ± 0.2 |
Orthogonal Mode | |||
27 | 6.9 ± 2.9 | 2.2 ± 0.4 | 4.3 ± 0.3 |
54 | 7.7 ± 3.2 | 3.0 ± 0.2 | 1.3 ± 0.1 |
109 | 8.6 ± 3.1 | 1.2 ± 0.1 | 6.0 ± 0.4 |
217 | 11.1 ± 3.2 | 5.7 ± 0.3 | 2.9 ± 0.3 |
435 | 10.8 ± 3.0 | 3.9 ± 0.3 | 7.1 ± 0.4 |
869 | 11.7 ± 3.0 | 5.5 ± 0.4 | 4.3 ± 0.2 |
1740 | 12.7 ± 2.8 | 2.6 ± 0.1 | 5.0 ± 0.2 |
3480 | 12.6 ± 2.9 | 3.1 ± 0.2 | 4.8 ± 0.3 |
6960 | 14.3 ± 2.8 | 2.6 ± 0.1 | 4.2 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhne, J.F.; Prediger, N.d.C.; Torres, B.B.M.; Barreto, R.C.; Kamikawachi, R.C. Induced Birefringence by Drop Cast in EFBG Ammonia Sensors. Photonics 2021, 8, 346. https://doi.org/10.3390/photonics8090346
Kuhne JF, Prediger NdC, Torres BBM, Barreto RC, Kamikawachi RC. Induced Birefringence by Drop Cast in EFBG Ammonia Sensors. Photonics. 2021; 8(9):346. https://doi.org/10.3390/photonics8090346
Chicago/Turabian StyleKuhne, Jean Filipe, Nathalia de Campos Prediger, Bruno Bassi Millan Torres, Rafael Carvalho Barreto, and Ricardo Canute Kamikawachi. 2021. "Induced Birefringence by Drop Cast in EFBG Ammonia Sensors" Photonics 8, no. 9: 346. https://doi.org/10.3390/photonics8090346
APA StyleKuhne, J. F., Prediger, N. d. C., Torres, B. B. M., Barreto, R. C., & Kamikawachi, R. C. (2021). Induced Birefringence by Drop Cast in EFBG Ammonia Sensors. Photonics, 8(9), 346. https://doi.org/10.3390/photonics8090346