Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres
Abstract
1. Introduction
2. Method
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pohl, D.W.; Courjon, D. Near Field Optics; Springer: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef]
- Smith, D.R.; Schurig, D.; Rosenbluth, M.; Schultz, S.; Ramakrishna, S.A.; Pendry, J.B. Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 2003, 82, 1506–1508. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, B.H.; Kim, W.Y.; Min, S.K.; Kim, Y.; Jouravlev, M.V.; Bose, R.; Kim, K.S.; Hwang, I.-C.; Kaufman, L.J.; et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 2009, 460, 498–501. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, W.; Li, L.; Luk’yanchuk, B.; Khan, A.; Liu, Z.; Chen, Z.; Hong, M. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef] [PubMed]
- Perrin, S.; Li, H.; Lecler, S.; Montgomery, P. Unconventional magnification behaviour in microsphere-assisted microscopy. Opt. Laser Technol. 2019, 114, 40–43. [Google Scholar] [CrossRef]
- Darafsheh, A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Opt. Lett. 2017, 42, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, W.; Yan, Y.; Lee, S.; Wang, T. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl. 2013, 2, e104. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Yu, H.; Wen, Y.; Yu, P.; Liu, Z.; Wang, Y.; Li, W.J. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat. Commun. 2016, 7, 13748. [Google Scholar] [CrossRef] [PubMed]
- Perrin, S.; Li, H.; Badu, K.; Comparon, T.; Quaranta, G.; Messaddeq, N.; Lemercier, N.; Montgomery, P.; Vonesch, J.-L.; Lecler, S. Transmission microsphere-assisted dark-field microscopy. Phys. Status Solidi RRL 2019, 13, 1800445. [Google Scholar] [CrossRef]
- Perrin, S.; Donie, Y.J.; Montgomery, P.; Gomard, G.; Lecler, S. Compensated Microsphere-Assisted Interference Microscopy. Phys. Rev. Appl. 2020, 13, 014068. [Google Scholar] [CrossRef]
- Allen, K.W.; Farahi, N.; Li, Y.; Limberopoulos, N.I.; Walker, D.E.; Urbas, A.M.; Astratov, V.N. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Opt. Express 2015, 23, 24484–24496. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Barbastathis, G.; Zhang, B. Classical imaging theory of a microlens with super-resolution. Opt. Lett. 2013, 38, 2988–2990. [Google Scholar] [CrossRef]
- Maslov, A.; Astratov, V. Resolution and reciprocity in microspherical nanoscopy: Point-spread function versus photonic nanojets. Phys. Rev. Appl. 2019, 11, 064004. [Google Scholar] [CrossRef]
- Lecler, S.; Perrin, S.; Leong-Hoi, A.; Montgomery, P. Photonic jet lens. Sci. Rep. 2019, 9, 4725. [Google Scholar] [CrossRef] [PubMed]
- Darafsheh, A. Photonic nanojets and their applications. J. Phys. Photonics 2021, 3, 022001. [Google Scholar] [CrossRef]
- Yi, K.J.; Wang, H.; Lu, Y.F.; Yang, Z.Y. Enhanced Raman scattering by self-assembled silica spherical microparticles. J. Appl. Phys. 2007, 101, 063528. [Google Scholar] [CrossRef]
- Tehrani, K.F.; Darafsheh, A.; Phang, S.; Mortensen, L.J. Resolution enhancement of 2-photon microscopy using high-refractive index microspheres. Proc. SPIE 2018, 10498, 1049833. [Google Scholar]
- Kassamakov, I.; Lecler, S.; Nolvi, A.; Leong-Hoi, A.; Montgomery, P.; Haeggstrom, E. 3D super-resolution optical profiling using microsphere enhanced Mirau interferometry. Sci. Rep. 2017, 7, 3683. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, D.; Wang, Y.; Rong, L.; Zhao, J.; Guo, S.; Wang, M. Super-resolution imaging by microsphere-assisted optical microscopy. Opt. Quantum Electron. 2016, 48, 557. [Google Scholar] [CrossRef]
- Yang, S.; Ye, Y.-H.; Shi, Q.; Zhang, J. Converting Evanescent Waves into Propagating Waves: The Super-Resolution Mechanism in Microsphere-Assisted Microscopy. J. Phys. Chem. A C 2020, 124, 25951–25956. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, Y.; Zhou, W.; Yu, M.; Urbach, H.P.; Wu, Y. Effects of whispering gallery mode in microsphere super-resolution imaging. Appl. Phys. 2017, 123, 236. [Google Scholar] [CrossRef]
- Ben-Aryeh, Y. Increase of resolution by use of microspheres related to complex Snell’s law. JOSA A 2016, 33, 2284–2288. [Google Scholar] [CrossRef] [PubMed]
- Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Lai, H.S.S.; Wang, F.; Li, Y.; Jia, B.; Liu, L.; Li, W.J. Super-resolution real imaging in microsphere-assisted microscopy. PLoS ONE 2016, 11, e0165194. [Google Scholar] [CrossRef]
- Astratov, V.N.; Brettin, A.; Abolmaali, F.; Poffo, L.; Maslov, A.V. Plasmonics and Super resolution in Microspherical Nanoscopy. In Proceedings of the 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar]
- Mollaei, M.; Simovski, C. Dual-metasurface superlens: A comprehensive study. Phys. Rev. B 2019, 100, 205426. [Google Scholar] [CrossRef]
- Darafsheh, A.; Walsh, G.F.; Negro, L.D.; Astratov, V.N. Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett. 2012, 101, 141128. [Google Scholar] [CrossRef]
- Zhang, T.; Li, P.; Yu, H.; Wang, F.; Wang, X.; Yang, T.; Yang, W.; Li, W.J.; Wang, Y.; Liu, L. Fabrication of flexible microlens arrays for parallel super-resolution imaging. Appl. Surf. Sci. 2020, 504, 144375. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudoukha, R.; Perrin, S.; Demagh, A.; Montgomery, P.; Demagh, N.-E.; Lecler, S. Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres. Photonics 2021, 8, 73. https://doi.org/10.3390/photonics8030073
Boudoukha R, Perrin S, Demagh A, Montgomery P, Demagh N-E, Lecler S. Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres. Photonics. 2021; 8(3):73. https://doi.org/10.3390/photonics8030073
Chicago/Turabian StyleBoudoukha, Rayenne, Stephane Perrin, Assia Demagh, Paul Montgomery, Nacer-Eddine Demagh, and Sylvain Lecler. 2021. "Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres" Photonics 8, no. 3: 73. https://doi.org/10.3390/photonics8030073
APA StyleBoudoukha, R., Perrin, S., Demagh, A., Montgomery, P., Demagh, N.-E., & Lecler, S. (2021). Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres. Photonics, 8(3), 73. https://doi.org/10.3390/photonics8030073