Special Issue “Neurophotonics—Optics for the Brain”
Abstract
:1. Introduction
2. Diffuse Optics and Functional Near-Infrared Spectroscopy (fNIRS)
3. Photoacoustic Imaging (PAI)
4. Optical Microscopy and Optical Coherence Tomography (OCT)
5. Photobiomodulation (PBM)
6. Optogenetics
7. The Broad Scope and Impact of Neurophotonics
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, H.; Guan, Y.; Chen, J.; Luo, Q. Optical imaging in brainsmatics. Photonics 2019, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, J.; Delafontane-Martel, P.; Lesage, F. A review of intrinsic optical imaging serial blockface histology (ICI-SBH) for whole rodent brain imaging. Photonics 2019, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Degtyaruk, O.; Mc Larney, B.; Deán-Ben, X.L.; Shoham, S.; Razansky, D. Optoacoustic calcium imaging of deep brain activity in an intracardially perfused mouse brain model. Photonics 2019, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Quaresima, V.; Ferrari, M. A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go? Photonics 2019, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Blasi, A.; Lloyd-Fox, S.; Katus, L.; Elwell, C.E. fNIRS for tracking brain development in the context of global health projects. Photonics 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Bosworth, A.; Russell Jacob, R.J.K. Update of fNIRS an an input to brain-computer interfaces: A review of research from the Tufts human-computer interation laboratory. Photonics 2019, 6, 90. [Google Scholar] [CrossRef] [Green Version]
- Khaksari, K.; Condy, E.; Millerhagen, J.B.; Anderson, A.A.; Dashtestani, H.; Gandjbakhche, A.H. Effects of performance and task duration on mental workload during working memory task. Photonics 2019, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Chiarelli, A.M.; Low, K.A.; Maclin, E.L.; Fletcher, M.A.; Kong, T.S.; Zimmerman, B.; Tan, C.H.; Sutton, B.P.; Fabiani, M.; Gratton, G. The optical effective attenuation coefficient as an informative measure of brain health in aging. Photonics 2019, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Blaney, G.; Sassaroli, A.; Pham, T.; Krishnamurthy, N.; Fantini, S. Multi-distance frequency-domain optical measurements of coherent cerebral hemodynamics. Photonics 2019, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Montagni, E.; Resta, F.; Mascaro, A.L.A.; Pavone, F.S. Optogenetics in brain research: From a strategy to investigate physiological function to a therapeutic tool. Photonics 2019, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Hamblin, M.R. Photobiomodulation for Alzheimer’s disease: Has the light dawned? Photonics 2019, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 2012, 63, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage 2014, 85, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Torricelli, A.; Contini, D.; Pifferi, A.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L. Time domain functional NIRS imaging for human brain mapping. NeuroImage 2014, 85, 28–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantini, S.; Sassaroli, A. Frequency-domain techniques for cerebral and functional near-infrared spectroscopy. Front. Neurosci. 2020, 14, 300. [Google Scholar] [CrossRef] [Green Version]
- Pinti, P.; Aichelburg, C.; Gilbert, S.; Hamilton, A.; Hirsch, J.; Burgess, P.; Tachtsidis, I. A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments. Jpn. Psychol. Res. 2018, 60, 343–373. [Google Scholar] [CrossRef] [Green Version]
- Fantini, S.; Frederick, B.; Sassaroli, A. Perspective: Prospects of non-invasive sensing of the human brain with diffuse optical imaging. APL Photonics 2018, 3, 110901. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Zheng, K.; Weng, L.; Chen, C.; Kiartivich, S.; Jiang, X.; Su, X.; Wang, Y.; Wang, X. Bibliometric evaluation of 2000–2019 publications on functional near-infrared spectroscopy. NeuroImage 2020, 220, 117121. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef] [Green Version]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Wang, L.; Yang, J.-M.; Maslov, K.I.; Wong, T.T.W.; Li, L.; Huang, C.-H.; Zou, J.; Wang, L.V. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 2015, 12, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi-Nejad, A.-R.; Mahmoudsadeh, M.; Hassanpour, M.S.; Wallois, F.; Muzik, O.; Papadelis, C.; Hansen, A.; Soltanian-Zadeh, H.; Gelovani, J.; Nasiriavanaki, M. Neonatal brain resting-state functional connectivity imaging modalities. Photoacoustics 2018, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wilt, B.A.; Burns, L.D.; Ho, E.T.W.; Ghosh, K.K.; Mukamel, E.A.; Schnitzer, M.J. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 2009, 32, 435–506. [Google Scholar] [CrossRef] [Green Version]
- Hillman, E.M.C.; Voleti, V.; Li, W.Z.; Yu, H. Light-sheet microscopy in neuroscience. Annu. Rev. Neurosci. 2019, 42, 295–313. [Google Scholar] [CrossRef]
- Men, J.; Huang, Y.; Solanki, J.; Zeng, X.; Alex, A.; Jerwick, J.; Zhang, Z.; Tanzi, R.E.; Zhou, C. Optical coherence tomography for brain imaging and developmental biology. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6803213. [Google Scholar] [CrossRef]
- Baran, U.; Wang, R.K. Review of optical coherence tomography based angiography in neuroscience. Neurophotonics 2016, 3, 010902. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.S.; Lichtman, J.W. Clarifying tissue clearing. Cell 2015, 162, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Gong, H.; Zhang, B.; Wang, Q.; Yan, C.; Wu, J.; Liu, Q.; Zeng, S.; Luo, Q. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 2010, 330, 1404–1408. [Google Scholar] [CrossRef] [Green Version]
- Wanner, A.A.; Kirschmann, M.A.; Genoud, C. Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience. J. Microsc. 2015, 259, 137–142. [Google Scholar] [CrossRef]
- Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics 2016, 9, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R.; Huang, Y.-Y. Photobiomodulation in the Brain: Low-Level Laser (Light) Therapy in Neurology and Neuroscience; Elsevier: London, UK, 2019. [Google Scholar]
- Kim, C.K.; Adhikari, A.; Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 2017, 18, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Krueger, D.; Izquierdo, E.; Viswanathan, R.; Hartmann, J.; Pallares Cartes, C.; De Renzis, S. Principles and applications of optogenetics in developmental biology. Development 2019, 146, dev175067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deubner, J.; Coulon, P.; Diester, I. Optogenetic approaches to study the mammalian brain. Curr. Opin. Struct. Biol. 2019, 57, 157–163. [Google Scholar] [CrossRef]
- Shirai, F.; Hayashi-Takagi, A. Optogenetics: Applications in psychiatric research. Psychiatry Clin. Neurosci. 2017, 71, 363–372. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantini, S. Special Issue “Neurophotonics—Optics for the Brain”. Photonics 2020, 7, 62. https://doi.org/10.3390/photonics7030062
Fantini S. Special Issue “Neurophotonics—Optics for the Brain”. Photonics. 2020; 7(3):62. https://doi.org/10.3390/photonics7030062
Chicago/Turabian StyleFantini, Sergio. 2020. "Special Issue “Neurophotonics—Optics for the Brain”" Photonics 7, no. 3: 62. https://doi.org/10.3390/photonics7030062
APA StyleFantini, S. (2020). Special Issue “Neurophotonics—Optics for the Brain”. Photonics, 7(3), 62. https://doi.org/10.3390/photonics7030062