On-Chip Etchless and Tunable Silicon Nitride Waveguide Mode Converter Based on Low-Loss Phase Change Material
Abstract
1. Introduction
2. Device Structure and Principle
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of silicon photonics technology and platform development. J. Light. Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A.; Karpeev, S.V. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: A review. Opto-Electron. Adv. 2022, 5, 25. [Google Scholar] [CrossRef]
- Feng, X.; Zhou, W.; Chen, H.; Ma, Y.; Tong, Y. Photonics breakthroughs 2024: Multidimensional integrated (de)multiplexers for optical fiber communications. IEEE Photon. J. 2025, 17, 7100509. [Google Scholar] [CrossRef]
- Liu, Y.J.; Xu, K.; Wang, S.; Shen, W.H.; Xie, H.C.; Wang, Y.J.; Xiao, S.M.; Yao, Y.; Du, J.B.; He, Z.Y.; et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 2019, 10, 3263. [Google Scholar] [CrossRef]
- Dai, D.; Bowers, J. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics 2014, 3, 283–311. [Google Scholar] [CrossRef]
- Jia, H.; Yang, S.L.; Zhou, T.; Shao, S.Z.; Fu, X.; Zhang, L.; Yang, L. WDM-compatible multimode optical switching system-on-chip. Nanophotonics 2019, 8, 889–898. [Google Scholar] [CrossRef]
- Dai, D. Silicon nanophotonic integrated devices for on-chip multiplexing and switching. J. Light. Technol. 2017, 35, 572–587. [Google Scholar] [CrossRef]
- Dong, P. Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6100609. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems. Opt. Express 2015, 23, 12840–12849. [Google Scholar] [CrossRef]
- Stern, B.; Zhu, X.L.; Chen, C.P.; Tzuang, L.D.; Cardenas, J.; Bergman, K.; Lipson, M. On-chip mode-division multiplexing switch. Optica 2015, 2, 530–535. [Google Scholar] [CrossRef]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [Google Scholar] [CrossRef]
- Sun, C.; Yu, Y.; Chen, G.; Zhang, X. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt. Lett. 2016, 41, 3257–3260. [Google Scholar] [CrossRef]
- Wu, X.; Huang, C.; Xu, K.; Shu, C.; Tsang, H.K. Mode-division multiplexing for silicon photonic network-on-chip. J. Light. Technol. 2017, 35, 3223–3228. [Google Scholar] [CrossRef]
- Sun, C.; Ding, Y.; Li, Z.; Qi, W.; Yu, Y.; Zhang, X. Key multimode silicon photonic devices inspired by geometrical optics. ACS Photonics 2020, 7, 2037–2045. [Google Scholar] [CrossRef]
- Cristiani, I.; Lacava, C.; Rademacher, G.; Puttnam, B.J.; Luìs, R.S.; Antonelli, C.; Mecozzi, A.; Shtaif, M.; Cozzolino, D.; Bacco, D.; et al. Roadmap on multimode photonics. J. Opt. 2022, 24, 083001. [Google Scholar] [CrossRef]
- Su, Y.; He, Y.; Chen, H.; Li, X.; Li, G. Perspective on mode-division multiplexing. Appl. Phys. Lett. 2021, 118, 200502. [Google Scholar] [CrossRef]
- Bogaerts, W.; Perez, D.; Capmany, J.; Miller, D.A.B.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable photonic circuits. Nature 2020, 586, 207–216. [Google Scholar] [CrossRef]
- Chen, X.; Shi, X.; Qiu, P.; Dai, Z.; Yu, Y.; Song, X.; Zhang, H.; Chen, M.; Ye, Y.; Ren, X.; et al. Efficient mode converters and filters using asymmetrical directional couplers with subwavelength gratings. Opt. Lett. 2022, 47, 4600–4603. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ding, Y.; Yvind, K.; Hvam, J. Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Opt. Lett. 2011, 36, 1059–1061. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, R.; Peng, Y.; Yi, X.; Chen, H.; Dai, D. High-performance silicon polarization switch based on a Mach-Zehnder interferometer integrated with polarization-dependent mode converters. Nanophotonics 2022, 11, 2293–2301. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jin, W.; Chiang, K.S. Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer. Opt. Lett. 2017, 42, 4877–4880. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.X.; Bai, B.W.; Yang, F.H.; Zhou, Z.P. Ultra-compact hybrid plasmonic mode convertor based on unidirectional eigenmode expansion. Opt. Lett. 2020, 45, 803–806. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H.X.; Yang, J.H.; Xiao, H.F.; Chen, W.P.; Tian, Y.H. Ultra-compact dual-polarization silicon mode-order converter. Opt. Lett. 2019, 44, 4179–4182. [Google Scholar] [PubMed]
- Cheng, Z.; Wang, J.; Yang, Z.Y.; Yin, H.; Wang, W.; Huang, Y.; Ren, X. Broadband and high extinction ratio mode converter using the tapered hybrid plasmonic waveguide. IEEE Photonics J. 2019, 11, 4900608. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar]
- Delaney, M.; Zeimpekis, I.; Du, H.; Yan, X.Z.; Banakar, M.; Thomson, D.J.; Hewak, D.W.; Muskens, O.L. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv. 2021, 7, abg3500. [Google Scholar]
- Alam, M.S.; Laing, R.; Bolatbek, Z.; Heenkenda, R.; Gnawali, R.; Payne, T.E.; Sarangan, A.; Hendrickson, J.R.; Agha, I. Fast cycling speed with multimillion cycling endurance of ultra-low loss phase change material (Sb2Se3) by engineered laser pulse irradiation. Adv. Funct. Mater. 2024, 34, 2310306. [Google Scholar] [CrossRef]
- Fei, Y.; Xu, Y.; Dong, Y.; Zhang, B.; Ni, Y. Nonvolatile phase change material based multifunctional silicon waveguide mode converters. Opt. Laser Technol. 2024, 168, 110006. [Google Scholar]
- Xu, Y.; Zhu, C.X.; Hu, X.; Dong, Y.; Zhang, B.; Ni, Y. On-chip silicon shallowly etched TM0-to-TM1 mode-order converter with high conversion efficiency and low modal crosstalk. J. Opt. Soc. Am. B-Opt. Phys. 2020, 37, 1290–1297. [Google Scholar] [CrossRef]
- Qi, Y.; Xu, Y.; Zhang, B.; Dong, Y.; Ni, Y. Etched circular waveguide-based on-chip silicon mode-order converters. Appl. Opt. 2021, 60, 6422–6428. [Google Scholar]
- Ansys Lumerical FDTD. Available online: https://www.ansys.com/products/optics/fdtd (accessed on 22 March 2025).
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.L.; Vuckovic, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef]
- Guo, R.; Decker, M.; Setzpfandt, F.; Gai, X.; Choi, D.Y.; Kiselev, R.; Chipouline, A.; Staude, I.; Pertsch, T.; Neshev, D.N.; et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Sci. Adv. 2017, 3, e1700007. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Hu, F.T.; Liu, Z.T.; Xie, P.; Shen, Y.J.; Xiao, Q.R.; Fu, X.; Bae, S.H.; Gong, M.L. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization. Opt. Express 2019, 27, 16425–16439. [Google Scholar] [CrossRef]
- Ohana, D.; Desiatov, B.; Mazurski, N.; Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 2016, 16, 7956–7961. [Google Scholar] [CrossRef] [PubMed]
Structural Parameter | W (µm) | θ (°) | Λ (µm) | a/Λ | n | L (µm) |
---|---|---|---|---|---|---|
Optimum value | 1.62 | 4.5 | 3.5 | 0.45 | 4 | 33 |
Structural Parameter | W (µm) | θ (°) | Λ (µm) | a/Λ | n | L (µm) |
---|---|---|---|---|---|---|
Optimum value | 2.5 | 5.5 | 1.9 | 0.4 | 8 | 38.6 |
Structure | Function | Length (µm) | CE (%) | CT (dB) | IL (dB) | BW (nm) | Tunable Working Wavelength |
---|---|---|---|---|---|---|---|
ADC [19] | TE0-TM0 [E] | 44 | >92 | <−15 | <1 | 40 (CE > 92%) | No |
MZI [20] | TE0-TE1 [E] | ~60 | - | <−20 | ~2 | - | No |
HPS [22] | TE0-TM1 [S] | 7 | 94.6 | - | <2.34 | 35 (CE > 92.2%) | No |
PM [23] | TE0-TE1 [E] | 4 | <90 | <−10 | 1.7 | 40 (CT < −14.9 dB) | No |
TM0-TM1 [E] | - | - | - | 1.2 | 40 (CT < −10.1 dB) | No | |
THP [24] | TE0-TM1 [S] | 11 | - | <−25 | 4.2 | 100 (CT < −20 dB) | No |
This work | TE0-TE1 [S] | 33 | 97.1 | −16.7 | 0.38 | 180 (CE > 92%) | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, T.; Guo, Y.; Lai, S.; Zhang, L.; Xu, Y.; Bao, H. On-Chip Etchless and Tunable Silicon Nitride Waveguide Mode Converter Based on Low-Loss Phase Change Material. Photonics 2025, 12, 934. https://doi.org/10.3390/photonics12090934
Shu T, Guo Y, Lai S, Zhang L, Xu Y, Bao H. On-Chip Etchless and Tunable Silicon Nitride Waveguide Mode Converter Based on Low-Loss Phase Change Material. Photonics. 2025; 12(9):934. https://doi.org/10.3390/photonics12090934
Chicago/Turabian StyleShu, Tianman, Yuexiang Guo, Shengxiong Lai, Lun Zhang, Yin Xu, and Hualong Bao. 2025. "On-Chip Etchless and Tunable Silicon Nitride Waveguide Mode Converter Based on Low-Loss Phase Change Material" Photonics 12, no. 9: 934. https://doi.org/10.3390/photonics12090934
APA StyleShu, T., Guo, Y., Lai, S., Zhang, L., Xu, Y., & Bao, H. (2025). On-Chip Etchless and Tunable Silicon Nitride Waveguide Mode Converter Based on Low-Loss Phase Change Material. Photonics, 12(9), 934. https://doi.org/10.3390/photonics12090934