Research Progress on Aging Detection of Composite Insulators Based on Spectroscopy
Abstract
1. Introduction
2. Ultraviolet Discharge Detection Method
3. Fourier Transform Infrared Spectroscopy
4. Hyperspectral Imaging Technology
5. Laser-Induced Breakdown Spectroscopy
6. Other Spectroscopic Detection Techniques
7. Integrated Multi-Spectroscopy Approaches: Case Studies
8. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Song, W.; Shen, W.-W.; Zhang, G.-J.; Song, B.-P.; Lang, Y.; Su, G.-Q.; Mu, H.-B.; Deng, J.-B. Aging characterization of high temperature vulcanized silicone rubber housing material used for outdoor insulation. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 961–969. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, Y.; Li, Z.; Liu, Y. Insulators identification for overhead transmission lines in distribution networks based on multi-scale dense network. Laser Optoelectron. Prog. 2021, 58, 346–355. [Google Scholar] [CrossRef]
- Molaie, S.; Lino, P. Review of the newly developed, mobile optical sensors for real-time measurement of the atmospheric particulate matter concentration. Micromachines 2021, 12, 416. [Google Scholar] [CrossRef]
- Islam, R.A.; Chan, Y.C.; Islam, M.F. Structure–property relationship in high-tension ceramic insulator fired at high temperature. Mater. Sci. Eng. B 2004, 106, 132–140. [Google Scholar] [CrossRef]
- Salem, A.A.; Abd-Rahman, R.; Al-Gailani, S.A.; Salam, Z.; Kamarudin, M.S.; Zainuddin, H.; Yousof, M.F.M. Risk assessment of polluted glass insulator using leakage current index under different operating conditions. IEEE Access 2020, 8, 175827–175839. [Google Scholar] [CrossRef]
- Chen, Q. Review in application of high voltage composite insulator and its ageing state. Insul. Mater. 2016, 49, 7–13+18. [Google Scholar]
- Amin, M.; Salman, M. Aging of polymeric insulators (an overview). Rev. Adv. Mater. Sci. 2006, 13, 93–116. [Google Scholar]
- Zeng, L.; Zhang, Y.; Zeng, X.; Li, T.; Deng, Z.; Wang, P.; Wan, H.; Xu, B.; Liu, Y.; Tong, C.; et al. Aging state evaluation methods for silicone rubber sheds of composite insulators. Insul. Surge Arresters 2022, 139–145+152. [Google Scholar] [CrossRef]
- Reynders, J.; Jandrell, I.; Reynders, S. Review of aging and recovery of silicone rubber insulation for outdoor use. IEEE Trans. Dielectr. Electr. Insul. 2020, 6, 620–631. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, L.; Zhou, R.; Shen, W.; Liang, X. Review on aging characterization and evaluation of silicon rubber composite insulator. High Volt. Appar. 2016, 52, 1–15. [Google Scholar]
- Yoshimura, N.; Kumagai, S.; Nishimura, S. Electrical and environmental aging of silicone rubber used in outdoor insulation. IEEE Trans. Dielectr. Electr. Insul. 2020, 6, 632–650. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Fan, Y.; Zhou, J.; Li, Z.; Xiao, S.; Zhang, X.; Wu, G. Optical imaging technology application in transmission line insulator monitoring: A review. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 3120–3132. [Google Scholar] [CrossRef]
- Fu, Y.; Song, X.; Wang, W. FTIR-based investigation on hydrophobic migration of composite insulators. Electrotechnics 2024, 182–186. [Google Scholar] [CrossRef]
- Liang, Y.; Ding, L.J.; Li, C.R.; Yang, K.; Tu, Y.P. Primary research on the diagnosis of aging silicone rubber insulators using thermally stimulation current. Proc. CSEE 2007, 27, 7–12. [Google Scholar]
- Zhang, B. Research on Non-Contact Electric Field Detection Method of Porcelain Degraded Insulator String. Master’s Thesis, Hebei North China Electric Power University, Baoding, China, 2022. [Google Scholar]
- Chen, L.; Cai, F.; Chen, X.; Li, X.; Fu, X.; Zhang, E.; Lin, Z. Study on fast detection and evaluation technology for composite insulator umbrella skirt ageing in humid and hot environment. Insul. Mater. 2023, 56, 88–93. [Google Scholar] [CrossRef]
- Dai, H.; Mei, H.; Wang, L.; Zhao, C.; Jia, Z. Description method II for unobvious hydrophobic state of composite insulators—Uncertainty of hydrophobic degree by spray grading method. Trans. China Electrotech. Soc. 2015, 30, 240–249. [Google Scholar]
- Dai, H.; Mei, H.; Wang, L.; Zhao, C.; Jia, Z. Description method I for unobvious hydrophobic state of composite insulators—Usability of contact angle method. Trans. China Electrotech. Soc. 2013, 28, 34–47. [Google Scholar]
- Kuang, J.; Chen, Z.; Chen, Z.; Tong, X.; Kang, L.; Pan, Z. Condition assessment of composite insulators based on thermally stimulated current method. In Proceedings of the 2023 IEEE 4th International Conference on Electrical Materials and Power Equipment (ICEMPE), Shanghai, China, 7–10 May 2023; pp. 1–4. [Google Scholar]
- Perlman, M.M. Thermally stimulated currents and voltages and dielectric properties. J. Electrochem. Soc. 1972, 119, 892. [Google Scholar] [CrossRef]
- Penner, M.H. Basic principles of spectroscopy. In Food Analysis; Suzanne Nielsen, S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 79–88. [Google Scholar]
- Sun, T.; Xu, H.; Ying, Y. Progress in application of near infrared spectroscopy to nondestructive on-line detection of products/food quality. Spectrosc. Spectr. Anal. 2009, 29, 122–126. [Google Scholar] [CrossRef]
- Niu, C.; Hu, Z.; Cheng, X.; Gong, A.; Wang, K.; Zhang, D.; Li, S.; Guo, L. Individual micron-sized aerosol qualitative analysis—Combined Raman spectroscopy and laser-induced breakdown spectroscopy by optical trapping in air. Anal. Chem. 2023, 95, 2874–2883. [Google Scholar] [CrossRef]
- Munajad, A.; Subroto, C.; Suwarno. Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 2018, 11, 364. [Google Scholar] [CrossRef]
- Fan, Y.; Guo, Y.; Liu, Y.; Xiao, S.; Zhang, X.; Wu, G. Evaluation method of composite insulator aging status based on hyperspectral imaging technology. Measurement 2024, 225, 113925. [Google Scholar] [CrossRef]
- Song, R.; Chen, W.; Zhang, J.; Wang, Z.; Shi, H. Simultaneous detection of multiple aging characteristic components in oil-paper insulation using sensitive Raman technology and microfluidics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 318, 124333. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Li, Y.; Zhang, F.; Zhang, X.; Wang, T.; Guo, Y.; Xiao, Z.; Wang, Y. Study on evaluation method of insulator surface contamination level based on LIBS technology and PCA algorithm. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; IEEE: New York, NY, USA, 2019; pp. 512–517. [Google Scholar]
- Mei, H.; Jiang, H.; Yin, F.; Wang, L.; Farzaneh, M. Terahertz imaging method for composite insulator defects based on edge detection algorithm. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Warner, P.P. Quantification of corona in polymeric insulators diagnosis with ultraviolet camera. In Proceedings of the XVII International Symposium on High Voltage Engineering, Hannover, Germany, 22–26 August 2011. [Google Scholar]
- Hadzhiev, I. Analysis of the influence of some factors on the electric and thermal field of a power distribution block. In Proceedings of the 2019 II International Conference on High Technology for Sustainable Development (HiTech), Sofia, Bulgaria, 10–11 October 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Ge, H.; Zhang, M.; Wu, G.; Zhang, X.; Guo, Y. Detection and evaluation method for contamination of ceramic insulator based on UV pulse method. Guangdong Electr. Power 2018, 31, 91–97. [Google Scholar] [CrossRef]
- Yang, J.; Xu, T.; Tang, J.; XIomg, L.; Zhang, Z. Online detection system for contaminated insulators based on ultra-violet pulse method. In Proceedings of the 2007 Annual Report—Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 14–17 October 2007; pp. 558–561. [Google Scholar]
- Dai, R.; Lu, F.; Wang, S. Relation of composite insulator surface discharge ultraviolet signal with electrical pulse signal. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 282–285. [Google Scholar]
- Zhu, J. Ultraviolet Detection Technology for Corona Discharge of Transmission Line Insulator Study. Master’s Thesis, Hunan University of Technology, Zhuzhou, China, 2018. [Google Scholar]
- Li, Z.; Ding, L.; Liu, J. UV detection technology of insulator discharge based on UAV platform. In Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27 February 2022; pp. 261–265. [Google Scholar]
- Suhaimi, S.M.I.; Muhamad, N.A.; Bashir, N.; Jamil, M.K.M.; Rahman, M.N.A. Harmonic components analysis of emitted ultraviolet signals of aged transmission line insulators under different surface discharge intensities. Sensors 2022, 22, 722. [Google Scholar] [CrossRef]
- Lin, X.; Fang, J.; Zhang, M.; Yin, K.; Tian, Y. Design of an ultraviolet detection device carried on unmanned aerial vehicle for monitoring the discharge of power distribution lines. In Proceedings of the 2023 3rd International Conference on Energy Engineering and Power Systems (EEPS), Dali, China, 28–30 July 2023; pp. 897–901. [Google Scholar]
- Rahim, N.N.A.; Muhamad, N.A.; Naim, N.S.M.; Jamil, M.K.M.; Ang, S.P. Ultraviolet pulse pattern for different types of insulator material during surface discharge activities. Energy Rep. 2023, 9, 870–878. [Google Scholar] [CrossRef]
- He, J.; Zhong, Y.; Xu, J.; Ye, H.; Chen, L.; Ke, C.; Chen, J. Research on intelligent transmission line inspection system based on high sensitivity and high gain ultraviolet detection technology. In Proceedings of the 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA), Shenyang, China, 28–30 June 2024; pp. 1013–1017. [Google Scholar]
- Rodrigues, G.A.; Araujo, B.V.S.; de Oliveira, J.H.P.; Xavier, G.V.R.; Lebre, U.D.E.D.S.; Cordeiro, C.A.; Freire, E.O.; Ferreira, T.V. Automated monitoring of insulation by ultraviolet imaging employing deep learning. Measurement 2025, 242, 116018. [Google Scholar] [CrossRef]
- Ding, F.; Zeng, L.; Wu, Q. Automatic regulating system design for Fourier infrared spectrometer beam splitter. Spectrosc. Spectr. Anal. 2017, 37, 2937–2942. [Google Scholar] [CrossRef]
- Ehsani, M.; Borsi, H.; Gockenbach, E.; Bakhshandeh, G.R.; Morshedian, J. Modified silicone rubber for use as high voltage outdoor insulators. Adv. Polym. Technol. 2005, 24, 51–61. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, Y.; Lu, Y.; Xu, Z.; Chen, C.; Xie, L. Study on aging characteristics of silicone rubber insulator sheds using FTIR. In Proceedings of the 2012 IEEE International Symposium on Electrical Insulation, San Juan, PR, USA, 10–13 June 2012; pp. 83–86. [Google Scholar]
- Liang, Y.; Guo, X. Aging condition assessment of silicone rubber for composite insulators based on FTIR. High Volt. Appar. 2015, 51, 62–67. [Google Scholar] [CrossRef]
- Cheng, L.; Mei, H.; Wang, L.; Guan, Z.; Zhang, F. Research on aging evaluation and remaining lifespan prediction of composite insulators in high temperature and humidity regions. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2850–2857. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, T.; Jiang, Z.; Jiang, X.; Hu, J.; Pang, G. Application of infrared spectroscopy in research on aging of silicone rubber in harsh environment. Polymers 2022, 14, 4728. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, Y.; Wu, G.; Fan, Y.; Xiao, S.; Zhang, X. A new detection method for the ageing state of composite insulators based on spectral–spatial feature fusion. Expert Syst. Appl. 2024, 254, 124353. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, M.; Liu, J.; Yi, X.; Zhang, J. Research on aging characteristics of silicon rubber sheds of composite insulators after operation. Hebei Electr. Power Technol. 2024, 43, 64–69. [Google Scholar]
- Zhou, Z.; Zhang, C.; Zhang, K.; Deng, Y.; Gu, C.; Lin, Y.; Yu, X. A composite insulator aging level classification method based on fourier transform infrared spectroscopy and deep learning model. Eng. Appl. Artif. Intell. 2025, 152, 110770. [Google Scholar] [CrossRef]
- He, D. Research on Insulator Pollution Identification Method Based on Hyperspectral Image. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2022. [Google Scholar]
- Qiu, Y.; Zhang, X.Q.; Guo, Y.J. Detection method of insulator contamination grades based on hyperspectral technique. High Volt. Eng. 2019, 45, 3587–3594. [Google Scholar] [CrossRef]
- Geng, J.; Kong, Y.; Liu, Y.; Liang, H.; Huang, Z. Experimental platform design of composite insulator surface contamination detection based on hyperspectral imaging technology. Exp. Technol. Manag. 2022, 39, 176–181. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, X.; Guo, Y.; Fan, C.; Qiu, Y.; Li, Y.; Wu, G. Study on detection method of composite insulator ageing based on hyperspectral technology. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 461–466. [Google Scholar]
- Xia, C.; Ren, M.; Wang, B.; Dong, M.; Song, B.; Hu, Y.; Pischler, O. Acquisition and analysis of hyperspectral data for surface contamination level of insulating materials. Measurement 2021, 173, 108560. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, J.; Wang, Y.; Jing, Q.; Liu, T. Porcelain insulator crack location and surface states pattern recognition based on hyperspectral technology. Entropy 2021, 23, 486. [Google Scholar] [CrossRef]
- Lin, K.; Guo, Y.; Liu, Y.; Zhang, X.; Xiao, S.; Gao, G.; Wu, G. Outdoor detection of the pollution degree of insulating materials based on hyperspectral model transfer. Measurement 2023, 214, 112805. [Google Scholar] [CrossRef]
- Kaur, H.; Bhuvan, K.; Padmawar, R.; Hore, D.K. Surface Structural Changes in Silicone Rubber Due to Electrical Tracking. Appl. Spectrosc. 2025, 79, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lv, S.; Xiao, H.; Liu, Y.; Chen, R.; Zhang, X.; Xiao, S.; Wu, G. Evaluation of the hygrothermal aging state of composite insulators based on hyperspectral imaging technology and the IDBO-BiGRU model. Measurement 2025, 253, 117446. [Google Scholar] [CrossRef]
- Shi, C.; Zeng, H.; Guo, Y.; Liu, K.; Zhang, X.; Wu, G. Surface roughness detection of roof insulator based on hyperspectral technology. IEEE Access 2020, 8, 81651–81659. [Google Scholar] [CrossRef]
- Yin, C.; Xiao, Z.; Guo, Y.; Shi, C.; Zhang, X.; Wu, G. Method for detecting the pollution degree of naturally contaminated insulator based on hyperspectral characteristics. High Volt. 2021, 6, 1031–1039. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.; Li, X.; Fu, X.; Zhang, R.; Wang, T. Determine the aging status of silicone rubber insulators base on smartphone hyperspectral cameras. In Proceedings of the 2021 International Conference on Power System Technology (POWERCON), Haikou, China, 8–9 December 2021; pp. 2399–2403. [Google Scholar]
- Pathak, A.K.; Kumar, R.; Singh, V.K.; Agrawal, R.; Rai, S.; Rai, A.K. Assessment of LIBS for spectrochemical analysis: A review. Appl. Spectrosc. Rev. 2012, 47, 14–40. [Google Scholar] [CrossRef]
- Guo, L. Preface to special topic: Laser-induced breakdown spectroscopy. J. Laser Appl. 2023, 35, 031002. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, H.; Liu, J.; Jia, B.; Li, Y.; Xie, M. Primary research on ageing diagnosis method for composite insulator based on laser induced breakdown spectrum. Insul. Mater. 2020, 53, 91–96. [Google Scholar] [CrossRef]
- Li, Y. Insulator Detection Method Based on Laser-Induced Breakdown Spectroscopy. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2019. [Google Scholar]
- Wang, X.; Wang, H.; Chen, C.; Jia, Z. Ablation properties and elemental analysis of silicone rubber using laser-induced breakdown spectroscopy. IEEE Trans. Plasma Sci. 2016, 44, 2766–2771. [Google Scholar] [CrossRef]
- Wang, X.; Hong, X.; Chen, P.; Zhao, C.; Jia, Z.; Wang, L.; Lv, Q.; Huang, R.; Liu, S. In-situ and quantitative analysis of aged silicone rubber materials with laser-induced breakdown spectroscopy. High Volt. 2018, 3, 140–146. [Google Scholar]
- Li, Y. Study on Aging Properties of Composite Insulators Based on Laser Induced Breakdown Spectroscopy. Master’s Thesis, North China Electric Power University, Baoding, China, 2019. [Google Scholar]
- Li, Y.; Zhang, X.; Guo, Y.; Gao, R.; Tang, X.; Li, Y.; Wu, G. Elemental analysis of aged composite insulators based on laser induced breakdown spectroscopy. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 473–477. [Google Scholar]
- Kokkinaki, O.; Klini, A.; Polychronaki, M.; Mavrikakis, N.C.; Siderakis, K.G.; Koudoumas, E.; Pylarinos, D.; Thalassinakis, E.; Kalpouzos, K.; Anglos, D. Assessing the type and quality of high voltage composite outdoor insulators by remote laser-induced breakdown spectroscopy analysis: A feasibility study. Spectrochim. Acta Part B At. Spectrosc. 2020, 165, 105768. [Google Scholar] [CrossRef]
- Homma, T.; Kumada, A.; Fujii, T.; Homma, H.; Oishi, Y. Depth profiling of surface degradation of silicone rubber composite insulators by remote laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106206. [Google Scholar] [CrossRef]
- Lu, S.; Wang, X.; Liu, X.; Guo, R.; He, Y. Calibration-free quantitative analysis of insulator pollution via laser-induced breakdown spectroscopy. Smart Power 2021, 49, 90–96. [Google Scholar]
- Dong, J.; Liang, L.; Wei, J.; Tang, H.; Zhang, T.; Yang, X.; Wang, K.; Li, H. A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy (CF-LIBS) using determined plasma temperature by genetic algorithm (GA). J. Anal. At. Spectrom. 2015, 30, 1336–1344. [Google Scholar] [CrossRef]
- Xu, S.; Che, C. Detection of defects in composite insulators based on laser-induced plasma combined with machine learning. Microw. Opt. Technol. Lett. 2024, 66, e34298. [Google Scholar] [CrossRef]
- Chen, P.; Wang, X.; Hong, X.; Wang, H.; Zhao, C.; Jia, Z.; Zou, L.; Li, Y.; Fan, J. Influence of sample surface roughness on signal of laser-induced breakdown spectroscopy. Spectrosc. Spectr. Anal. 2019, 39, 1929–1934. [Google Scholar] [CrossRef]
- Vinod, P.; Babu, M.S.; Sarathi, R.; Vasa, N.J.; Kornhuber, S. Influence of standoff distance and sunlight on detection of pollution deposits on silicone rubber insulators adopting remote LIBS analysis. IEEE Trans. Ind. Appl. 2022, 58, 3285–3293. [Google Scholar] [CrossRef]
- Tang, Y.; Ma, S.; Yuan, R.; Ma, Y.; Sheng, W.; Zhan, S.; Wang, J.; Guo, L. Spectral interference elimination and self-absorption reduction in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption. Opt. Lasers Eng. 2020, 134, 106254. [Google Scholar] [CrossRef]
- Zhang, D.; Chu, Y.; Ma, S.; Sheng, Z.; Chen, F.; Hu, Z.; Zhang, S.; Wang, B.; Guo, L. Three-dimensional elemental imaging of material surface using image-assisted laser-induced breakdown spectroscopy. Appl. Surf. Sci. 2020, 534, 147601. [Google Scholar] [CrossRef]
- Zong, P. Research on Detection Technology of Power Grid Equipment Insulation Materials Based on Terahertz Technology. Master’s Thesis, Hebei North China Electric Power University, Baoding, China, 2022. [Google Scholar]
- Zhao, G.; Shen, Y.; Liu, Y. Application of terahertz technology in military and security field. J. Electron. Meas. Instrum. 2015, 29, 1097–1101. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Ren, J.; Gu, J.; Zhang, D. Terahertz detection and quantitative analysis of interlayer air gap in power insulators. J. Laser Optoelectron. Prog. 2023, 60, 165–171. [Google Scholar]
- Zeng, Z.; Guo, P.; Zhang, R.; Zhao, Z.; Bao, J.; Wang, Q.; Xu, Z. Review of aging evaluation methods for silicone rubber composite insulators. Polymers 2023, 15, 1141. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Wang, Z.; Miao, C.; Wu, Z. Aging detection of silicon rubber composite insulator based on terahertz technology. J. Guangxi Univ. Sci. Technol. 2021, 32, 1–8+34. [Google Scholar] [CrossRef]
- He, J.; Dang, J.; Yang, H.; Luo, K.; Wu, Z. A detection technology of composite insulator aging state. Electr. Eng. Mater. 2023, 43–47. [Google Scholar] [CrossRef]
- Mei, H.; Li, L.; Yin, F.; Wang, L.; Farzaneh, M. Study on detecting main ingredients of silicone rubber based on terahertz spectrum. High Volt. 2024, 9, 518–527. [Google Scholar] [CrossRef]
- Cao, B.; Li, S.; Cui, Y.; Yang, D.; Kang, Y.; Lu, B.; Wu, G. Terahertz frequency domain response for insulation state assessment of vehicle cable terminal under electro-thermal aging. CSEE J. Power Energy Syst. 2024, 11, 458–467. [Google Scholar]
- Zhang, T.; Cheng, L.; Liu, Y.; Zhang, S.; Yang, L.; Zhao, X. Non-destructive testing of silicone rubber formulations for composite insulators based on terahertz spectral analysis. IEEE Trans. Dielectr. Electr. Insul. 2025, 1. [Google Scholar] [CrossRef]
- Li, J.; Lu, L.; Si, Z. Brief discussion on Raman spectroscopy technology and its applications. Technol. Wind 2015, 73. [Google Scholar] [CrossRef]
- Wu, L.; Ouyang, Z.; Cao, S.; Yi, D.; Sun, S.; Liu, X. Research development and application of Raman scattering technology. J. Light Scatt. 2005, 17, 180–186. [Google Scholar] [CrossRef]
- Ghunem, R.A.; Tay, L.-L.; El-Hag, A.H. Raman Spectroscopy of 200 kV and 400 kV Service-Aged Silicone Rubber Insulation in the Gulf Region. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 810–813. [Google Scholar]
- Chen, X.; Fan, Y.; Ma, Z.; Zhang, W. Aging state discrimination of oil–paper insulation raw Raman spectra based on integrated enhanced KNN. Laser Optoelectron. Prog. 2023, 60, 2130002. [Google Scholar]
- Liu, H.; Shen, Q.; Yong, J.; Hu, X.; Liu, R.; Duan, Y. Research on application of composite insulator detection technology based on multi-spectral method. High Volt. Appar. 2014, 50, 69–75. [Google Scholar] [CrossRef]
- Jin, L.; Ai, J.; Tian, Z.; Zhang, Y. Detection of polluted insulators using the information fusion of multispectral images. IEEE Trans. Dielectr. Electr. Insul. 2018, 24, 3530–3538. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Guo, Y.; Liu, K.; Wu, G. Aging Degree Evaluation of Composite Insulator Based on Hyperspectral Technology. Trans. China Electrotech. Soc. 2021, 36, 388–396. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Wang, Y.; Yin, C.; Guo, Y. Method of Insulator Pollution Degree Detection Based on Fusion of Hyperspectral and Infrared Technology. Adv. Technol. Electr. Eng. Energy 2022, 41, 55–62. [Google Scholar] [CrossRef]
- Wang, B.; Ren, M.; Xia, C.; Li, Q.; Dong, M.; Zhang, C.; Guo, C.; Liu, W.; Pischler, O. Evaluation of Insulator Aging Status Based on Multispectral Imaging Optimized by Hyperspectral Analysis. Measurement 2022, 205, 112058. [Google Scholar] [CrossRef]
Spectroscopic Technique | Detection Principle | Advantages | Limitations |
---|---|---|---|
Ultraviolet Pulse Spectrum | By collecting ultraviolet light emission signals from the insulator surface, the intensity and location of partial discharge phenomena are analyzed to assess aging degree and localized damage positions [31]. | Simple setup | Susceptible to environmental interference; requires long-term monitoring. |
Fourier Transform Infrared (FTIR) Spectroscopy | Assesses material aging by analyzing variations in functional groups (e.g., Si-O, Si-CH3) in silicone rubber [41]. | Non-destructive; fast spectral acquisition | Limited quantitative evaluation abilities |
Hyperspectral Imaging | Utilizes the “spectral fingerprint effect” to detect differences in surface reflectance across a wide range of wavelengths, thereby evaluating aging [51]. | Suitable for in situ detection; high sensitivity | Requires supplemental illumination; relatively low spectral resolution |
Laser-Induced Breakdown Spectroscopy (LIBS) | Determines aging and material state by analyzing elemental composition and concentration changes in surface and subsurface layers [64]. | Minimally invasive; high detection speed and accuracy | Influenced by long-term laser source stability |
Terahertz Spectroscopy | Probes internal structural anomalies and assesses material state by analyzing changes in conductivity, permittivity, and associated reflection/transmission characteristics [80]. | Capable of penetrating non-conductive materials | Limited spatial resolution and signal-to-noise ratio |
Raman Spectrum | Raman spectroscopy evaluates the aging state of the chemical structure by reading and analyzing the vibrational fingerprints of molecular bonds in silicone rubber and examining changes in characteristic peaks [88]. | Non-destructive; fast spectral acquisition | Fluorescence interference; high demand for surface cleanliness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, J.; Cai, Y.; Chen, J.; Chen, F.; Cao, J.; Li, Q.; Hu, Z. Research Progress on Aging Detection of Composite Insulators Based on Spectroscopy. Photonics 2025, 12, 905. https://doi.org/10.3390/photonics12090905
Nie J, Cai Y, Chen J, Chen F, Cao J, Li Q, Hu Z. Research Progress on Aging Detection of Composite Insulators Based on Spectroscopy. Photonics. 2025; 12(9):905. https://doi.org/10.3390/photonics12090905
Chicago/Turabian StyleNie, Junfei, Yunpiao Cai, Jinke Chen, Furong Chen, Jiapei Cao, Quan Li, and Zhenlin Hu. 2025. "Research Progress on Aging Detection of Composite Insulators Based on Spectroscopy" Photonics 12, no. 9: 905. https://doi.org/10.3390/photonics12090905
APA StyleNie, J., Cai, Y., Chen, J., Chen, F., Cao, J., Li, Q., & Hu, Z. (2025). Research Progress on Aging Detection of Composite Insulators Based on Spectroscopy. Photonics, 12(9), 905. https://doi.org/10.3390/photonics12090905