A Picometre-Level Resolution Test Method without Nonlinearity for Heterodyne Interferometer Measurement Electronics
Abstract
:1. Introduction
2. Resolution of Heterodyne Interferometer
3. Theory
3.1. Principle of the Test Method
3.2. The Key Performance Indicators of the Test Method
4. Experiments and Results
4.1. Experiment Setup
4.2. Stability of the Testing Device
4.3. Nonlinearity Suppression
4.4. Resolution Test under Different Conditions
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haitjema, H. The Calibration of Displacement Sensors. Sensors 2020, 20, 584. [Google Scholar] [CrossRef]
- Papazetis, G.; Avrampos, P.; Papantoniou, A.; Vosniakos, G. Machine Tools Metrology Using Laser Systems. In Proceedings of the 7th Annual National Congress on Metrology, Athens, Greece, 11–12 May 2018. [Google Scholar]
- Yang, P.; Xing, G.; He, L. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer. Ultrasonics 2014, 54, 402–407. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, G. A review of interferometry for geometric measurement. Meas. Sci. Technol. 2018, 29, 102001. [Google Scholar] [CrossRef]
- Yu, X.; Gillmer, S.R.; Woody, S.C.; Ellis, J.D. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology. Rev. Sci. Instrum. 2016, 87, 065109. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Hong, M.; Tan, H.; Chen, G.; Shi, L.; Chong, T. Fabrication of nanostructures with laser interference lithography. J. Alloys Compd. 2008, 449, 261–264. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Weng, Z.; Yu, M.; Wang, D. Bio-inspired hierarchical patterning of silicon by laser interference lithography. Appl. Opt. 2016, 55, 3226–3232. [Google Scholar] [CrossRef]
- Demarest, F.C. High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Meas. Sci. Technol. 1999, 9, 1024. [Google Scholar] [CrossRef]
- Diao, X.; Hu, P.; Xue, Z.; Kang, Y. High-speed high-resolution heterodyne interferometer using a laser with low beat frequency. Appl. Opt. 2016, 55, 110–116. [Google Scholar] [CrossRef]
- Weichert, C.; Flügge, J.; Köning, R.; Bosse, H.; Tutsch, R. Aspects of design and the characterization of a high resolution heterodyne displacement interferometer. In Proceedings of the Fringe 2009: 6th International Workshop on Advanced Optical Metrology, Nürtingen, Germany, 14–16 September 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Köchert, P.; Flügge, J.; Weichert, C.; Köning, R.; Manske, E. Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime. Meas. Sci. Technol. 2012, 23, 074005. [Google Scholar] [CrossRef]
- Oldham, N.M.; Kramar, J.A.; Hetrick, P.; Teague, E. Electronic limitations in phase meters for heterodyne interferometry. Precis. Eng. 1993, 15, 173–179. [Google Scholar] [CrossRef]
- Bobroff, N. Recent advances in displacement measuring interferometry. Meas. Sci. Technol. 1993, 4, 907. [Google Scholar] [CrossRef]
- Lawall, J.; Kessler, E. Michelson interferometry with 10 pm accuracy. Rev. Sci. Instrum. 2000, 71, 2669–2676. [Google Scholar] [CrossRef]
- Cao, Y.; Bu, X.; Xu, M.; Han, W. APD optimal bias voltage compensation method based on machine learning. ISA Trans. 2020, 97, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Liang, X.; Bi, S. Noise analysis and determination method of optimum multiplication rate for APD sensor. In Proceedings of the International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), Xiamen, China, 3–5 March 2012; pp. 1403–1406. [Google Scholar] [CrossRef]
- Zhang, E.; Chen, B.; Zheng, H.; Teng, X. Laser heterodyne interference signal processing method based on phase shift of reference signal. Opt. Express 2018, 26, 8656–8668. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Wang, J.; Lin, X.; Xing, X.; Fu, H.; Tan, J. Phase Measurement Method Based on Digital Dual Frequency Comb for High-Precision High-Speed Heterodyne Interferometry. IEEE Sens. J. 2023, 23, 9707–9715. [Google Scholar] [CrossRef]
- Deng, W.; Peng, X. A high precision phase extraction method in heterodyne interferometer based on FPGA. J. Phys. Conf. Ser. 2022, 2387, 012002. [Google Scholar] [CrossRef]
- Agilent Technologies, Inc. Agilent N1225A Four-Channel High Resolution Laser Axis Board for VME, 2nd ed.; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2007. [Google Scholar]
- Zygo. ZMI™ 4100 Series Measurement Board. Available online: https://www.zygo.com.cn/products/nano-position-sensors/displacement-measuring-interferometers/measurement-electronics (accessed on 20 February 2024).
- Physik Instrumente (PI) GmbH & Co., KG. LISA Linear Actuator and Stage P-753. Available online: https://www.physikinstrumente.com/en/products/nanopositioning-piezo-flexure-stages/linear-piezo-flexure-stages/p-753-lisa-linear-actuator-stage-200900/#downloads (accessed on 24 March 2024).
- Yang, T.; Yan, L.; Chen, B.; Liu, Y.; Tian, Q. Signal processing method of phase correction for laser heterodyne interferometry. Opt. Lasers Eng. 2014, 57, 93–100. [Google Scholar] [CrossRef]
- Zhang, E.; Chen, B.; Yan, L.; Yang, T.; Hao, Q.; Dong, W.; Li, C. Laser heterodyne interferometric signal processing method based on rising edge locking with high frequency clock signal. Opt. Express 2013, 21, 4638–4652. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Wang, J.; Hu, P.; Tan, J. Zoom into picometer: A picoscale equivalent phase-difference-generating method for testing heterodyne interferometers without ultraprecision stages. Opt. Eng. 2019, 58, 064101. [Google Scholar] [CrossRef]
- Badami, V.; de Groot, P. Displacement measuring interferometry. In Handbook of Optical Dimensional Metrology; CRC Press: Boca Raton, FL, USA, 2013; Volume 4. [Google Scholar] [CrossRef]
- Ellis, J.D. Field Guide to Displacement Measuring Interferometry; SPIE Press: Bellingham, WA, USA, 2014. [Google Scholar]
- Stone, J. Test and Calibration of Displacement Measuring Laser Interfe-Rometers. In Proceedings of the 3rd International Conference on Mechanical Metrology (CIMMEC III), Gramado, Brazil, 14–16 October 2014. [Google Scholar]
- Haitjema, H. Calibration of Displacement Laser Interferometer Systems for Industrial Metrology. Sensors 2019, 19, 4100. [Google Scholar] [CrossRef]
- Miyata, T.; Araki, T.; Iwata, T. Correction of the intensity-dependent phase delay in a silicon avalanche photodiode by controlling its reverse bias voltage. IEEE J. Quantum Electron. 2003, 39, 919–923. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Xing, X.; Hu, P.; Chang, D.; Tan, J. Equivalent Measurement and Real-Time Compensation of Error Caused by Intensity Change in Deep Sub-Nanometer Displacement Measuring Interferometry. Photonics 2022, 9, 714. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, Z.; Huang, J.; Zou, X.; Yang, C.; Chen, B. Analysis of AM-to-PM conversion in MUTC photodiodes based on an equivalent circuit model. Opt. Express 2021, 29, 33582–33591. [Google Scholar] [CrossRef] [PubMed]
- Goutzoulis, A.P. Design and Fabrication of Acousto-Optic Devices; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Eom, T.B.; Kim, J.A.; Kang, C.-S.; Park, B.C.; Kim, J.W. A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer. Meas. Sci. Technol. 2008, 19, 075302. [Google Scholar] [CrossRef]
- Badami, V.; Patterson, S. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precis. Eng. 2000, 24, 41–49. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, B.; Shi, Z. Synthetic model of nonlinearity errors in laser heterodyne interferometry. Appl. Opt. 2018, 57, 3890–3901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, W.; Xing, X.; Wang, J.; Hu, P.; Tan, J. A Picometre-Level Resolution Test Method without Nonlinearity for Heterodyne Interferometer Measurement Electronics. Photonics 2024, 11, 331. https://doi.org/10.3390/photonics11040331
Sun Y, Li W, Xing X, Wang J, Hu P, Tan J. A Picometre-Level Resolution Test Method without Nonlinearity for Heterodyne Interferometer Measurement Electronics. Photonics. 2024; 11(4):331. https://doi.org/10.3390/photonics11040331
Chicago/Turabian StyleSun, Yunke, Wenjun Li, Xu Xing, Jianing Wang, Pengcheng Hu, and Jiubin Tan. 2024. "A Picometre-Level Resolution Test Method without Nonlinearity for Heterodyne Interferometer Measurement Electronics" Photonics 11, no. 4: 331. https://doi.org/10.3390/photonics11040331
APA StyleSun, Y., Li, W., Xing, X., Wang, J., Hu, P., & Tan, J. (2024). A Picometre-Level Resolution Test Method without Nonlinearity for Heterodyne Interferometer Measurement Electronics. Photonics, 11(4), 331. https://doi.org/10.3390/photonics11040331