Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV
Abstract
1. Introduction
2. Device Fabrication and Experimental Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, W.C.; Parsons, J.B.; Crew, M.C. Nitrogen Compounds of Gallium III. Gallic Nitride. J. Phys. Chem. 1931, 36, 2651–2654. [Google Scholar] [CrossRef]
- Grimmeiss, H.G.; Koelmans, H. Über die Kantenemission und andere Emissionen des GaN. Z. Für Naturforschung 1959, 14A, 264–271. [Google Scholar] [CrossRef][Green Version]
- Pankove, J.I.; Miller, E.A.; Richman, D.; Berkeyheiser, J.E. Electroluminescence in GaN. J. Lumin. 1971, 4, 63–66. [Google Scholar] [CrossRef]
- Nakamura, S. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 1990, 30, L1705–L1707. [Google Scholar] [CrossRef]
- Khan, M.A.; Bhattarai, A.; Kuznia, J.N.; Olson, D.T. Highly-doped thin-channel GaN-metal-semiconductor field-effect transistors. Appl. Phys. Lett. 1993, 63, 1214–1215. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue light-emitting diodes. Appl. Phys. Lett. 1990, 64, 1687–1689. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; LI, D.; Zhou, K.; Cheng, Y.; Zhou, W.; Tian, A.; Ikeda, M.; Zhang, S.; Yang, H. GaN-based blue laser diodes with 2.2 W o f light output power under continuous-wave operation. IEEE Photonics Technol. Lett. 2017, 29, 2203–2206. [Google Scholar] [CrossRef]
- Gmachl, C.F.; Ng, H.M.; Cho, A.Y. Intersubband absorption in GaN/AlGaN multiple quantum wells in the wavelength range of λ~1.75–4.2 µm. Appl. Phys. Lett. 2000, 77, 334–336. [Google Scholar] [CrossRef]
- Suzuki, N.; Iizuka, N. Feasibility study on ultrafast nonlinear optical properties of 1.55 µm intersubband transition in AlGaN/GaN quantum wells. Jpn. J. Appl. Phys. 1997, 36, L1006–L1008. [Google Scholar] [CrossRef]
- Hofstetter, D.; Schad, S.-S.; Wu, H.; Schaff, W.J.; Eastman, L.F. GaN/AlN-based quantum-well infrared photo-detector for 1.55 µm. Appl. Phys. Lett. 2003, 87, 572–574. [Google Scholar] [CrossRef]
- Hofstetter, D.; Aku-Leh, C.; Beck, H.; Bour, D.P. AlGaN-based 1.55 µm phototransistor as a crucial building block for optical computers. Crystals 2021, 11, 1431. [Google Scholar] [CrossRef]
- Hofstetter, D.; Bour, D.P.; Beck, H. Proposal for deep-UV emission from a near-infrared AlN/GaN-based quantum cascade device using multiple photon up-conversion. Crystals 2023, 13, 494. [Google Scholar] [CrossRef]
- Miller, D.A.B.; Chemla, D.S.; Damen, T.C.; Gossard, A.C.; Wiegmann, W.; Wood, T.H.; Burrus, C.A. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Phys. Rev. Lett. 1984, 53, 2173–2177. [Google Scholar] [CrossRef]
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Für Phys. 1927, 17, 172–198. [Google Scholar] [CrossRef]
- Link, A.; Bitzer, K.; Limmer, W.; Sauer, R.; Kirchner, C.; Schwegler, V.; Kamp, M.; Ebling, D.G.; Benz, K.W. Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN. J. Appl. Phys. 1999, 86, 6256–6260. [Google Scholar] [CrossRef]
- Capasso, F.; Mohammed, K.; Cho, A.Y. Sequential resonant tunnelling through a multiquantum well superlattice. Appl. Phys. Lett. 1986, 48, 478–480. [Google Scholar] [CrossRef]
- Kurosawa, R.; Morita, K.; Kohda, M.; Ishitani, Y. Effect of cubic Dresselhaus spin-orbit interaction in a persistent spin helix state including phonon scattering in semiconductor quantum wells. Appl. Phys. Lett. 2015, 107, 182103. [Google Scholar] [CrossRef]
- Tatham, M.C.; Ryan, J.F.; Foxon, C.T. Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells. Phys. Rev. Lett. 1989, 63, 1637–1640. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sirtori, C.; Sivco, D.L.; Hutchinson, A.L.; Chu, S.N.G.; Cho, A.Y. Measurement of the intersubband scattering rate in semiconductor quantum wells by excited state differential absorption spectroscopy. Appl. Phys. Lett. 1993, 63, 1354–1356. [Google Scholar] [CrossRef]
- Yang, Q.; Manz, C.; Bronner, W.; Köhler, K.; Wagner, J. Room-temperature short-wavelength (~3.7–3.9 µm) GaInAs/AlAsSb quantum-cascade lasers. Appl. Phys. Lett. 2006, 88, 121127. [Google Scholar] [CrossRef]
- Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202. [Google Scholar] [CrossRef]
- Hofstetter, D.; Baumann, E.; Giorgetta, F.R.; Théron, R.; Wu, H.; Schaff, W.J.; Dawlaty, J.; George, P.A.; Eastman, L.F.; Rana, F.; et al. Intersubband transition-based processes and devices in AlN/GaN-based heterostructures. Proc. IEEE 2010, 98, 1234–1248. [Google Scholar] [CrossRef]
- Hofstetter, D.; Bour, D.P.; Kirste, L. Mid-infrared electro-luminescence and absorption from AlGaN/GaN-based multi-quantum well inter-subband structures. Appl. Phys. Lett. 2014, 104, 241107. [Google Scholar] [CrossRef]
- Hofstetter, D.; Beck, H.; Kirste, L.; Bour, D.P. Measurement of internal polarization by QCSE induced level shift in AlGaN quantum cascade emitters. IEEE Photonics Technol. Lett. 2019, 31, 657–660. [Google Scholar] [CrossRef]
- Hofstetter, D.; Beck, H.; Epler, J.E.; Kirste, L.; Bour, D.P. Evidence of strong electron-phonon interaction in a GaN-based quantum cascade emitter. Superlattices Microstruct. 2020, 145, 106631. [Google Scholar] [CrossRef]
- Viswanath, A.K.; Lee, J.I.; Kim, D.; Lee, C.R.; Leem, J.Y. Exciton-phonon interactions, exciton binding energy, and their importance in the realization of room-temperature semiconductor lasers based on GaN. Phys. Rev. B 1998, 58, 16333–16339. [Google Scholar] [CrossRef]
- Clark, C.D.; Dean, P.J.; Harris, P.V. Intrinsic edge absorption in diamond. Proc. R. Soc. A 1964, A277, 312–329. [Google Scholar] [CrossRef]
- Lockwood, D.J.; Yu, G.; Rowell, N.L. Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs, and InSb studied by oblique incidence infrared spectroscopy. Solid State Commun. 2005, 136, 404–409. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1985; Volumes I–II, ISBN 9780080547213. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 628–632. [Google Scholar] [CrossRef]
- Novikova, N.N.; Yakovlev, V.A.; Kucherenko, I.V.; Karczewski, G.; Aleshchenko, Y.A.; Muratov, A.V.; Zavaritskaya, T.N.; Melnik, N. Optical phonons in PbTe/CdTe multilayer heterostructures. Semiconductors 2015, 49, 644–648. [Google Scholar] [CrossRef]
- Ferreira, R.; Bastard, G. Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum well structures. Phys. Rev. B 1989, 40, 1074–1082. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum cascade laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Heber, J.D.; Gmachl, C.; Ng, H.M.; Cho, A.Y. Comparative study of ultrafast intersubband electron scattering times at ~1.55 µm wavelength in GaN/AlGaN heterostructures. Appl. Phys. Lett. 2002, 81, 1237–1239. [Google Scholar] [CrossRef]
- Ashkenov, N.; Mbenkum, B.N.; Bundesmann, C.; Riede, V.; Lorenz, M.; Spemann, E.; Kaidashev, E.M.; Kasic, A.; Schubert, M.; Grundmann, M.; et al. Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 2003, 93, 126–130. [Google Scholar] [CrossRef]
- Iizuka, N.; Kaneko, K.; Suzuki, N.; Asano, T.; Noda, S.; Wada, O. Ultrafast intersubband relaxation (150 fs) in AlGaN/GaN multiple quantum wells. Appl. Phys. Lett. 2000, 77, 648–651. [Google Scholar] [CrossRef]
Material | Bandgap | LO-Phonon | Excited Electron Lifetime | Reference |
---|---|---|---|---|
C | 5.47 eV | 167 meV | - | [27] |
GaN | 3.41 eV | 92 meV | 0.17 ps | [9] |
ZnO | 3.27 eV | 72 meV | - | [21] |
GaP | 2.32 eV | 50 meV | - | [28] |
AlAs | 2.12 eV | 50 meV | - | [28] |
CdSe | 1.74 eV | 26 meV | - | [29] |
GaAs | 1.43 eV | 36 meV | 0.3 ps | [30] |
InP | 1.42 eV | 43 meV | - | [28] |
InGaAs | 1.02 eV | 32 meV | 0.35 ps | [19] |
InAs | 0.43 eV | 30 meV | - | [28] |
PbTe | 0.32 eV | 13 meV | - | [31] |
InSb | 0.17 eV | 24 meV | 0.38 ps | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofstetter, D.; Beck, H.; Bour, D.P. Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV. Photonics 2023, 10, 909. https://doi.org/10.3390/photonics10080909
Hofstetter D, Beck H, Bour DP. Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV. Photonics. 2023; 10(8):909. https://doi.org/10.3390/photonics10080909
Chicago/Turabian StyleHofstetter, Daniel, Hans Beck, and David P. Bour. 2023. "Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV" Photonics 10, no. 8: 909. https://doi.org/10.3390/photonics10080909
APA StyleHofstetter, D., Beck, H., & Bour, D. P. (2023). Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV. Photonics, 10(8), 909. https://doi.org/10.3390/photonics10080909